Files
biguint
chain_spec_builder
compact
fixed_point
fork_tree
frame_benchmarking
frame_benchmarking_cli
frame_election_provider_support
frame_executive
frame_metadata
frame_support
frame_support_procedural
frame_support_procedural_tools
frame_support_procedural_tools_derive
frame_support_test
frame_support_test_pallet
frame_system
frame_system_benchmarking
frame_system_rpc_runtime_api
frame_try_runtime
multiply_by_rational
node_bench
node_browser_testing
node_cli
node_executor
node_inspect
node_primitives
node_rpc
node_rpc_client
node_runtime
node_template
node_template_runtime
node_testing
normalize
pallet_assets
pallet_atomic_swap
pallet_aura
pallet_authority_discovery
pallet_authorship
pallet_babe
pallet_balances
pallet_bounties
pallet_collective
pallet_contracts
pallet_contracts_primitives
pallet_contracts_proc_macro
pallet_contracts_rpc
pallet_contracts_rpc_runtime_api
pallet_democracy
pallet_election_provider_multi_phase
pallet_elections
pallet_elections_phragmen
pallet_example
pallet_example_offchain_worker
pallet_example_parallel
pallet_gilt
pallet_grandpa
pallet_identity
pallet_im_online
pallet_indices
pallet_lottery
pallet_membership
pallet_mmr
pallet_mmr_primitives
pallet_mmr_rpc
pallet_multisig
pallet_nicks
pallet_node_authorization
pallet_offences
pallet_offences_benchmarking
pallet_proxy
pallet_randomness_collective_flip
pallet_recovery
pallet_scheduler
pallet_scored_pool
pallet_session
pallet_session_benchmarking
pallet_society
pallet_staking
pallet_staking_reward_curve
pallet_staking_reward_fn
pallet_sudo
pallet_template
pallet_timestamp
pallet_tips
pallet_transaction_payment
pallet_transaction_payment_rpc
pallet_transaction_payment_rpc_runtime_api
pallet_transaction_storage
pallet_treasury
pallet_uniques
pallet_utility
pallet_vesting
per_thing_rational
phragmen_balancing
phragmen_pjr
phragmms_balancing
reduce
remote_externalities
sc_allocator
sc_authority_discovery
sc_basic_authorship
sc_block_builder
sc_chain_spec
sc_chain_spec_derive
sc_cli
sc_client_api
sc_client_db
sc_consensus
sc_consensus_aura
sc_consensus_babe
sc_consensus_babe_rpc
sc_consensus_epochs
sc_consensus_manual_seal
sc_consensus_pow
sc_consensus_slots
sc_consensus_uncles
sc_executor
sc_executor_common
sc_executor_wasmi
sc_executor_wasmtime
sc_finality_grandpa
sc_finality_grandpa_rpc
sc_informant
sc_keystore
sc_light
sc_network
sc_network_gossip
sc_network_test
sc_offchain
sc_peerset
sc_proposer_metrics
sc_rpc
sc_rpc_api
sc_rpc_server
sc_runtime_test
sc_service
sc_service_test
sc_state_db
sc_sync_state_rpc
sc_telemetry
sc_tracing
sc_tracing_proc_macro
sc_transaction_pool
sc_transaction_pool_api
sp_api
sp_api_proc_macro
sp_application_crypto
sp_application_crypto_test
sp_arithmetic
sp_authority_discovery
sp_authorship
sp_block_builder
sp_blockchain
sp_consensus
sp_consensus_aura
sp_consensus_babe
sp_consensus_pow
sp_consensus_slots
sp_consensus_vrf
sp_core
sp_database
sp_debug_derive
sp_externalities
sp_finality_grandpa
sp_inherents
sp_io
sp_keyring
sp_keystore
sp_maybe_compressed_blob
sp_npos_elections
sp_npos_elections_solution_type
sp_offchain
sp_panic_handler
sp_rpc
sp_runtime
sp_runtime_interface
sp_runtime_interface_proc_macro
sp_runtime_interface_test
sp_runtime_interface_test_wasm
sp_runtime_interface_test_wasm_deprecated
sp_sandbox
sp_serializer
sp_session
sp_staking
sp_state_machine
sp_std
sp_storage
sp_tasks
sp_test_primitives
sp_timestamp
sp_tracing
sp_transaction_pool
sp_transaction_storage_proof
sp_trie
sp_utils
sp_version
sp_version_proc_macro
sp_wasm_interface
subkey
substrate
substrate_browser_utils
substrate_build_script_utils
substrate_frame_cli
substrate_frame_rpc_support
substrate_frame_rpc_system
substrate_prometheus_endpoint
substrate_test_client
substrate_test_runtime
substrate_test_runtime_client
substrate_test_runtime_transaction_pool
substrate_test_utils
substrate_test_utils_derive
substrate_test_utils_test_crate
substrate_wasm_builder
test_runner
test_runner_example
try_runtime_cli
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
// This file is part of Substrate.

// Copyright (C) 2021 Parity Technologies (UK) Ltd.
// SPDX-License-Identifier: GPL-3.0-or-later WITH Classpath-exception-2.0

// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.

// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.

// You should have received a copy of the GNU General Public License
// along with this program. If not, see <https://www.gnu.org/licenses/>.

//! Provides a generic wrapper around shared data. See [`SharedData`] for more information.

use parking_lot::{Condvar, MappedMutexGuard, Mutex, MutexGuard};
use std::sync::Arc;

/// Created by [`SharedDataLocked::release_mutex`].
///
/// As long as the object isn't dropped, the shared data is locked. It is advised to drop this
/// object when the shared data doesn't need to be locked anymore. To get access to the shared data
/// [`Self::upgrade`] is provided.
#[must_use = "Shared data will be unlocked on drop!"]
pub struct SharedDataLockedUpgradable<T> {
	shared_data: SharedData<T>,
}

impl<T> SharedDataLockedUpgradable<T> {
	/// Upgrade to a *real* mutex guard that will give access to the inner data.
	///
	/// Every call to this function will reaquire the mutex again.
	pub fn upgrade(&mut self) -> MappedMutexGuard<T> {
		MutexGuard::map(self.shared_data.inner.lock(), |i| &mut i.shared_data)
	}
}

impl<T> Drop for SharedDataLockedUpgradable<T> {
	fn drop(&mut self) {
		let mut inner = self.shared_data.inner.lock();
		// It should not be locked anymore
		inner.locked = false;

		// Notify all waiting threads.
		self.shared_data.cond_var.notify_all();
	}
}

/// Created by [`SharedData::shared_data_locked`].
///
/// As long as this object isn't dropped, the shared data is held in a mutex guard and the shared
/// data is tagged as locked. Access to the shared data is provided through
/// [`Deref`](std::ops::Deref) and [`DerefMut`](std::ops::DerefMut). The trick is to use
/// [`Self::release_mutex`] to release the mutex, but still keep the shared data locked. This means
/// every other thread trying to access the shared data in this time will need to wait until this
/// lock is freed.
///
/// If this object is dropped without calling [`Self::release_mutex`], the lock will be dropped
/// immediately.
#[must_use = "Shared data will be unlocked on drop!"]
pub struct SharedDataLocked<'a, T> {
	/// The current active mutex guard holding the inner data.
	inner: MutexGuard<'a, SharedDataInner<T>>,
	/// The [`SharedData`] instance that created this instance.
	///
	/// This instance is only taken on drop or when calling [`Self::release_mutex`].
	shared_data: Option<SharedData<T>>,
}

impl<'a, T> SharedDataLocked<'a, T> {
	/// Release the mutex, but keep the shared data locked.
	pub fn release_mutex(mut self) -> SharedDataLockedUpgradable<T> {
		SharedDataLockedUpgradable {
			shared_data: self.shared_data.take().expect("`shared_data` is only taken on drop; qed"),
		}
	}
}

impl<'a, T> Drop for SharedDataLocked<'a, T> {
	fn drop(&mut self) {
		if let Some(shared_data) = self.shared_data.take() {
			// If the `shared_data` is still set, it means [`Self::release_mutex`] wasn't
			// called and the lock should be released.
			self.inner.locked = false;

			// Notify all waiting threads about the released lock.
			shared_data.cond_var.notify_all();
		}
	}
}

impl<'a, T> std::ops::Deref for SharedDataLocked<'a, T> {
	type Target = T;

	fn deref(&self) -> &Self::Target {
		&self.inner.shared_data
	}
}

impl<'a, T> std::ops::DerefMut for SharedDataLocked<'a, T> {
	fn deref_mut(&mut self) -> &mut Self::Target {
		&mut self.inner.shared_data
	}
}

/// Holds the shared data and if the shared data is currently locked.
///
/// For more information see [`SharedData`].
struct SharedDataInner<T> {
	/// The actual shared data that is protected here against concurrent access.
	shared_data: T,
	/// Is `shared_data` currently locked and can not be accessed?
	locked: bool,
}

/// Some shared data that provides support for locking this shared data for some time.
///
/// When working with consensus engines there is often data that needs to be shared between multiple
/// parts of the system, like block production and block import. This struct provides an abstraction
/// for this shared data in a generic way.
///
/// The pain point when sharing this data is often the usage of mutex guards in an async context as
/// this doesn't work for most of them as these guards don't implement `Send`. This abstraction
/// provides a way to lock the shared data, while not having the mutex locked. So, the data stays
/// locked and we are still able to hold this lock over an `await` call.
///
/// # Example
///
/// ```
/// # use sc_consensus::shared_data::SharedData;
///
/// let shared_data = SharedData::new(String::from("hello world"));
///
/// let lock = shared_data.shared_data_locked();
///
/// let shared_data2 = shared_data.clone();
/// let join_handle1 = std::thread::spawn(move || {
///     // This will need to wait for the outer lock to be released before it can access the data.
///     shared_data2.shared_data().push_str("1");
/// });
///
/// assert_eq!(*lock, "hello world");
///
/// // Let us release the mutex, but we still keep it locked.
/// // Now we could call `await` for example.
/// let mut lock = lock.release_mutex();
///
/// let shared_data2 = shared_data.clone();
/// let join_handle2 = std::thread::spawn(move || {
///     shared_data2.shared_data().push_str("2");
/// });
///
/// // We still have the lock and can upgrade it to access the data.
/// assert_eq!(*lock.upgrade(), "hello world");
/// lock.upgrade().push_str("3");
///
/// drop(lock);
/// join_handle1.join().unwrap();
/// join_handle2.join().unwrap();
///
/// let data = shared_data.shared_data();
/// // As we don't know the order of the threads, we need to check for both combinations
/// assert!(*data == "hello world321" || *data == "hello world312");
/// ```
pub struct SharedData<T> {
	inner: Arc<Mutex<SharedDataInner<T>>>,
	cond_var: Arc<Condvar>,
}

impl<T> Clone for SharedData<T> {
	fn clone(&self) -> Self {
		Self { inner: self.inner.clone(), cond_var: self.cond_var.clone() }
	}
}

impl<T> SharedData<T> {
	/// Create a new instance of [`SharedData`] to share the given `shared_data`.
	pub fn new(shared_data: T) -> Self {
		Self {
			inner: Arc::new(Mutex::new(SharedDataInner { shared_data, locked: false })),
			cond_var: Default::default(),
		}
	}

	/// Acquire access to the shared data.
	///
	/// This will give mutable access to the shared data. After the returned mutex guard is dropped,
	/// the shared data is accessible by other threads. So, this function should be used when
	/// reading/writing of the shared data in a local context is required.
	///
	/// When requiring to lock shared data for some longer time, even with temporarily releasing the
	/// lock, [`Self::shared_data_locked`] should be used.
	pub fn shared_data(&self) -> MappedMutexGuard<T> {
		let mut guard = self.inner.lock();

		while guard.locked {
			self.cond_var.wait(&mut guard);
		}

		debug_assert!(!guard.locked);

		MutexGuard::map(guard, |i| &mut i.shared_data)
	}

	/// Acquire access to the shared data and lock it.
	///
	/// This will give mutable access to the shared data. The returned [`SharedDataLocked`]
	/// provides the function [`SharedDataLocked::release_mutex`] to release the mutex, but
	/// keeping the data locked. This is useful in async contexts for example where the data needs
	/// to be locked, but a mutex guard can not be held.
	///
	/// For an example see [`SharedData`].
	pub fn shared_data_locked(&self) -> SharedDataLocked<T> {
		let mut guard = self.inner.lock();

		while guard.locked {
			self.cond_var.wait(&mut guard);
		}

		debug_assert!(!guard.locked);
		guard.locked = true;

		SharedDataLocked { inner: guard, shared_data: Some(self.clone()) }
	}
}

#[cfg(test)]
mod tests {
	use super::*;

	#[test]
	fn shared_data_locking_works() {
		const THREADS: u32 = 100;
		let shared_data = SharedData::new(0u32);

		let lock = shared_data.shared_data_locked();

		for i in 0..THREADS {
			let data = shared_data.clone();
			std::thread::spawn(move || {
				if i % 2 == 1 {
					*data.shared_data() += 1;
				} else {
					let mut lock = data.shared_data_locked().release_mutex();
					// Give the other threads some time to wake up
					std::thread::sleep(std::time::Duration::from_millis(10));
					*lock.upgrade() += 1;
				}
			});
		}

		let lock = lock.release_mutex();
		std::thread::sleep(std::time::Duration::from_millis(100));
		drop(lock);

		while *shared_data.shared_data() < THREADS {
			std::thread::sleep(std::time::Duration::from_millis(100));
		}
	}
}