1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
// This file is part of Substrate.

// Copyright (C) 2019-2021 Parity Technologies (UK) Ltd.
// SPDX-License-Identifier: GPL-3.0-or-later WITH Classpath-exception-2.0

// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.

// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.

// You should have received a copy of the GNU General Public License
// along with this program. If not, see <https://www.gnu.org/licenses/>.

//! Defines the compiled Wasm runtime that uses Wasmtime internally.

use crate::{
	host::HostState,
	imports::{resolve_imports, Imports},
	instance_wrapper::{EntryPoint, InstanceWrapper},
	state_holder,
};

use sc_allocator::FreeingBumpHeapAllocator;
use sc_executor_common::{
	error::{Result, WasmError},
	runtime_blob::{DataSegmentsSnapshot, ExposedMutableGlobalsSet, GlobalsSnapshot, RuntimeBlob},
	wasm_runtime::{InvokeMethod, WasmInstance, WasmModule},
};
use sp_runtime_interface::unpack_ptr_and_len;
use sp_wasm_interface::{Function, Pointer, Value, WordSize};
use std::{
	path::{Path, PathBuf},
	rc::Rc,
	sync::Arc,
};
use wasmtime::{Engine, Store};

enum Strategy {
	FastInstanceReuse {
		instance_wrapper: Rc<InstanceWrapper>,
		globals_snapshot: GlobalsSnapshot<wasmtime::Global>,
		data_segments_snapshot: Arc<DataSegmentsSnapshot>,
		heap_base: u32,
	},
	RecreateInstance(InstanceCreator),
}

struct InstanceCreator {
	store: Store,
	module: Arc<wasmtime::Module>,
	imports: Arc<Imports>,
	heap_pages: u32,
}

impl InstanceCreator {
	fn instantiate(&self) -> Result<InstanceWrapper> {
		InstanceWrapper::new(&self.store, &*self.module, &*self.imports, self.heap_pages)
	}
}

/// Data required for creating instances with the fast instance reuse strategy.
struct InstanceSnapshotData {
	mutable_globals: ExposedMutableGlobalsSet,
	data_segments_snapshot: Arc<DataSegmentsSnapshot>,
}

/// A `WasmModule` implementation using wasmtime to compile the runtime module to machine code
/// and execute the compiled code.
pub struct WasmtimeRuntime {
	module: Arc<wasmtime::Module>,
	snapshot_data: Option<InstanceSnapshotData>,
	config: Config,
	host_functions: Vec<&'static dyn Function>,
	engine: Engine,
}

impl WasmtimeRuntime {
	/// Creates the store respecting the set limits.
	fn new_store(&self) -> Store {
		match self.config.max_memory_pages {
			Some(max_memory_pages) => Store::new_with_limits(
				&self.engine,
				wasmtime::StoreLimitsBuilder::new().memory_pages(max_memory_pages).build(),
			),
			None => Store::new(&self.engine),
		}
	}
}

impl WasmModule for WasmtimeRuntime {
	fn new_instance(&self) -> Result<Box<dyn WasmInstance>> {
		let store = self.new_store();

		// Scan all imports, find the matching host functions, and create stubs that adapt arguments
		// and results.
		//
		// NOTE: Attentive reader may notice that this could've been moved in `WasmModule` creation.
		//       However, I am not sure if that's a good idea since it would be pushing our luck
		// further       by assuming that `Store` not only `Send` but also `Sync`.
		let imports = resolve_imports(
			&store,
			&self.module,
			&self.host_functions,
			self.config.heap_pages,
			self.config.allow_missing_func_imports,
		)?;

		let strategy = if let Some(ref snapshot_data) = self.snapshot_data {
			let instance_wrapper =
				InstanceWrapper::new(&store, &self.module, &imports, self.config.heap_pages)?;
			let heap_base = instance_wrapper.extract_heap_base()?;

			// This function panics if the instance was created from a runtime blob different from
			// which the mutable globals were collected. Here, it is easy to see that there is only
			// a single runtime blob and thus it's the same that was used for both creating the
			// instance and collecting the mutable globals.
			let globals_snapshot =
				GlobalsSnapshot::take(&snapshot_data.mutable_globals, &instance_wrapper);

			Strategy::FastInstanceReuse {
				instance_wrapper: Rc::new(instance_wrapper),
				globals_snapshot,
				data_segments_snapshot: snapshot_data.data_segments_snapshot.clone(),
				heap_base,
			}
		} else {
			Strategy::RecreateInstance(InstanceCreator {
				imports: Arc::new(imports),
				module: self.module.clone(),
				store,
				heap_pages: self.config.heap_pages,
			})
		};

		Ok(Box::new(WasmtimeInstance { strategy }))
	}
}

/// A `WasmInstance` implementation that reuses compiled module and spawns instances
/// to execute the compiled code.
pub struct WasmtimeInstance {
	strategy: Strategy,
}

// This is safe because `WasmtimeInstance` does not leak reference to `self.imports`
// and all imports don't reference any anything, other than host functions and memory
unsafe impl Send for WasmtimeInstance {}

impl WasmInstance for WasmtimeInstance {
	fn call(&self, method: InvokeMethod, data: &[u8]) -> Result<Vec<u8>> {
		match &self.strategy {
			Strategy::FastInstanceReuse {
				instance_wrapper,
				globals_snapshot,
				data_segments_snapshot,
				heap_base,
			} => {
				let entrypoint = instance_wrapper.resolve_entrypoint(method)?;

				data_segments_snapshot.apply(|offset, contents| {
					instance_wrapper.write_memory_from(Pointer::new(offset), contents)
				})?;
				globals_snapshot.apply(&**instance_wrapper);
				let allocator = FreeingBumpHeapAllocator::new(*heap_base);

				let result =
					perform_call(data, Rc::clone(&instance_wrapper), entrypoint, allocator);

				// Signal to the OS that we are done with the linear memory and that it can be
				// reclaimed.
				instance_wrapper.decommit();

				result
			},
			Strategy::RecreateInstance(instance_creator) => {
				let instance_wrapper = instance_creator.instantiate()?;
				let heap_base = instance_wrapper.extract_heap_base()?;
				let entrypoint = instance_wrapper.resolve_entrypoint(method)?;

				let allocator = FreeingBumpHeapAllocator::new(heap_base);
				perform_call(data, Rc::new(instance_wrapper), entrypoint, allocator)
			},
		}
	}

	fn get_global_const(&self, name: &str) -> Result<Option<Value>> {
		match &self.strategy {
			Strategy::FastInstanceReuse { instance_wrapper, .. } =>
				instance_wrapper.get_global_val(name),
			Strategy::RecreateInstance(instance_creator) =>
				instance_creator.instantiate()?.get_global_val(name),
		}
	}

	fn linear_memory_base_ptr(&self) -> Option<*const u8> {
		match &self.strategy {
			Strategy::RecreateInstance(_) => {
				// We do not keep the wasm instance around, therefore there is no linear memory
				// associated with it.
				None
			},
			Strategy::FastInstanceReuse { instance_wrapper, .. } =>
				Some(instance_wrapper.base_ptr()),
		}
	}
}

/// Prepare a directory structure and a config file to enable wasmtime caching.
///
/// In case of an error the caching will not be enabled.
fn setup_wasmtime_caching(
	cache_path: &Path,
	config: &mut wasmtime::Config,
) -> std::result::Result<(), String> {
	use std::fs;

	let wasmtime_cache_root = cache_path.join("wasmtime");
	fs::create_dir_all(&wasmtime_cache_root)
		.map_err(|err| format!("cannot create the dirs to cache: {:?}", err))?;

	// Canonicalize the path after creating the directories.
	let wasmtime_cache_root = wasmtime_cache_root
		.canonicalize()
		.map_err(|err| format!("failed to canonicalize the path: {:?}", err))?;

	// Write the cache config file
	let cache_config_path = wasmtime_cache_root.join("cache-config.toml");
	let config_content = format!(
		"\
[cache]
enabled = true
directory = \"{cache_dir}\"
",
		cache_dir = wasmtime_cache_root.display()
	);
	fs::write(&cache_config_path, config_content)
		.map_err(|err| format!("cannot write the cache config: {:?}", err))?;

	config
		.cache_config_load(cache_config_path)
		.map_err(|err| format!("failed to parse the config: {:?}", err))?;

	Ok(())
}

fn common_config(semantics: &Semantics) -> std::result::Result<wasmtime::Config, WasmError> {
	let mut config = wasmtime::Config::new();
	config.cranelift_opt_level(wasmtime::OptLevel::SpeedAndSize);
	config.cranelift_nan_canonicalization(semantics.canonicalize_nans);

	if let Some(DeterministicStackLimit { native_stack_max, .. }) =
		semantics.deterministic_stack_limit
	{
		config
			.max_wasm_stack(native_stack_max as usize)
			.map_err(|e| WasmError::Other(format!("cannot set max wasm stack: {}", e)))?;
	}

	// Be clear and specific about the extensions we support. If an update brings new features
	// they should be introduced here as well.
	config.wasm_reference_types(false);
	config.wasm_simd(false);
	config.wasm_bulk_memory(false);
	config.wasm_multi_value(false);
	config.wasm_multi_memory(false);
	config.wasm_module_linking(false);
	config.wasm_threads(false);

	Ok(config)
}

/// Knobs for deterministic stack height limiting.
///
/// The WebAssembly standard defines a call/value stack but it doesn't say anything about its
/// size except that it has to be finite. The implementations are free to choose their own notion
/// of limit: some may count the number of calls or values, others would rely on the host machine
/// stack and trap on reaching a guard page.
///
/// This obviously is a source of non-determinism during execution. This feature can be used
/// to instrument the code so that it will count the depth of execution in some deterministic
/// way (the machine stack limit should be so high that the deterministic limit always triggers
/// first).
///
/// The deterministic stack height limiting feature allows to instrument the code so that it will
/// count the number of items that may be on the stack. This counting will only act as an rough
/// estimate of the actual stack limit in wasmtime. This is because wasmtime measures it's stack
/// usage in bytes.
///
/// The actual number of bytes consumed by a function is not trivial to compute  without going
/// through full compilation. Therefore, it's expected that `native_stack_max` is grealy
/// overestimated and thus never reached in practice. The stack overflow check introduced by the
/// instrumentation and that relies on the logical item count should be reached first.
///
/// See [here][stack_height] for more details of the instrumentation
///
/// [stack_height]: https://github.com/paritytech/wasm-utils/blob/d9432baf/src/stack_height/mod.rs#L1-L50
pub struct DeterministicStackLimit {
	/// A number of logical "values" that can be pushed on the wasm stack. A trap will be triggered
	/// if exceeded.
	///
	/// A logical value is a local, an argument or a value pushed on operand stack.
	pub logical_max: u32,
	/// The maximum number of bytes for stack used by wasmtime JITed code.
	///
	/// It's not specified how much bytes will be consumed by a stack frame for a given wasm
	/// function after translation into machine code. It is also not quite trivial.
	///
	/// Therefore, this number should be choosen conservatively. It must be so large so that it can
	/// fit the [`logical_max`](Self::logical_max) logical values on the stack, according to the
	/// current instrumentation algorithm.
	///
	/// This value cannot be 0.
	pub native_stack_max: u32,
}

pub struct Semantics {
	/// Enabling this will lead to some optimization shenanigans that make calling [`WasmInstance`]
	/// extermely fast.
	///
	/// Primarily this is achieved by not recreating the instance for each call and performing a
	/// bare minimum clean up: reapplying the data segments and restoring the values for global
	/// variables. The vast majority of the linear memory is not restored, meaning that effects
	/// of previous executions on the same [`WasmInstance`] can be observed there.
	///
	/// This is not a problem for a standard substrate runtime execution because it's up to the
	/// runtime itself to make sure that it doesn't involve any non-determinism.
	///
	/// Since this feature depends on instrumentation, it can be set only if runtime is
	/// instantiated using the runtime blob, e.g. using [`create_runtime`].
	// I.e. if [`CodeSupplyMode::Verbatim`] is used.
	pub fast_instance_reuse: bool,

	/// Specifiying `Some` will enable deterministic stack height. That is, all executor
	/// invocations will reach stack overflow at the exactly same point across different wasmtime
	/// versions and architectures.
	///
	/// This is achieved by a combination of running an instrumentation pass on input code and
	/// configuring wasmtime accordingly.
	///
	/// Since this feature depends on instrumentation, it can be set only if runtime is
	/// instantiated using the runtime blob, e.g. using [`create_runtime`].
	// I.e. if [`CodeSupplyMode::Verbatim`] is used.
	pub deterministic_stack_limit: Option<DeterministicStackLimit>,

	/// Controls whether wasmtime should compile floating point in a way that doesn't allow for
	/// non-determinism.
	///
	/// By default, the wasm spec allows some local non-determinism wrt. certain floating point
	/// operations. Specifically, those operations that are not defined to operate on bits (e.g.
	/// fneg) can produce NaN values. The exact bit pattern for those is not specified and may
	/// depend on the particular machine that executes wasmtime generated JITed machine code. That
	/// is a source of non-deterministic values.
	///
	/// The classical runtime environment for Substrate allowed it and punted this on the runtime
	/// developers. For PVFs, we want to ensure that execution is deterministic though. Therefore,
	/// for PVF execution this flag is meant to be turned on.
	pub canonicalize_nans: bool,
}

pub struct Config {
	/// The number of wasm pages to be mounted after instantiation.
	pub heap_pages: u32,

	/// The total number of wasm pages an instance can request.
	///
	/// If specified, the runtime will be able to allocate only that much of wasm memory pages.
	/// This is the total number and therefore the [`heap_pages`] is accounted for.
	///
	/// That means that the initial number of pages of a linear memory plus the [`heap_pages`]
	/// should be less or equal to `max_memory_pages`, otherwise the instance won't be created.
	///
	/// Moreover, `memory.grow` will fail (return -1) if the sum of the number of currently mounted
	/// pages and the number of additional pages exceeds `max_memory_pages`.
	///
	/// The default is `None`.
	pub max_memory_pages: Option<u32>,

	/// The WebAssembly standard requires all imports of an instantiated module to be resolved,
	/// othewise, the instantiation fails. If this option is set to `true`, then this behavior is
	/// overriden and imports that are requested by the module and not provided by the host
	/// functions will be resolved using stubs. These stubs will trap upon a call.
	pub allow_missing_func_imports: bool,

	/// A directory in which wasmtime can store its compiled artifacts cache.
	pub cache_path: Option<PathBuf>,

	/// Tuning of various semantics of the wasmtime executor.
	pub semantics: Semantics,
}

enum CodeSupplyMode<'a> {
	/// The runtime is instantiated using the given runtime blob.
	Verbatim {
		// Rationale to take the `RuntimeBlob` here is so that the client will be able to reuse
		// the blob e.g. if they did a prevalidation. If they didn't they can pass a `RuntimeBlob`
		// instance and it will be used anyway in most cases, because we are going to do at least
		// some instrumentations for both anticipated paths: substrate execution and PVF execution.
		//
		// Should there raise a need in performing no instrumentation and the client doesn't need
		// to do any checks, then we can provide a `Cow` like semantics here: if we need the blob
		// and  the user got `RuntimeBlob` then extract it, or otherwise create it from the given
		// bytecode.
		blob: RuntimeBlob,
	},

	/// The code is supplied in a form of a compiled artifact.
	///
	/// This assumes that the code is already prepared for execution and the same `Config` was
	/// used.
	Artifact { compiled_artifact: &'a [u8] },
}

/// Create a new `WasmtimeRuntime` given the code. This function performs translation from Wasm to
/// machine code, which can be computationally heavy.
pub fn create_runtime(
	blob: RuntimeBlob,
	config: Config,
	host_functions: Vec<&'static dyn Function>,
) -> std::result::Result<WasmtimeRuntime, WasmError> {
	// SAFETY: this is safe because it doesn't use `CodeSupplyMode::Artifact`.
	unsafe { do_create_runtime(CodeSupplyMode::Verbatim { blob }, config, host_functions) }
}

/// The same as [`create_runtime`] but takes a precompiled artifact, which makes this function
/// considerably faster than [`create_runtime`].
///
/// # Safety
///
/// The caller must ensure that the compiled artifact passed here was produced by
/// [`prepare_runtime_artifact`]. Otherwise, there is a risk of arbitrary code execution with all
/// implications.
///
/// It is ok though if the `compiled_artifact` was created by code of another version or with
/// different configuration flags. In such case the caller will receive an `Err` deterministically.
pub unsafe fn create_runtime_from_artifact(
	compiled_artifact: &[u8],
	config: Config,
	host_functions: Vec<&'static dyn Function>,
) -> std::result::Result<WasmtimeRuntime, WasmError> {
	do_create_runtime(CodeSupplyMode::Artifact { compiled_artifact }, config, host_functions)
}

/// # Safety
///
/// This is only unsafe if called with [`CodeSupplyMode::Artifact`]. See
/// [`create_runtime_from_artifact`] to get more details.
unsafe fn do_create_runtime(
	code_supply_mode: CodeSupplyMode<'_>,
	config: Config,
	host_functions: Vec<&'static dyn Function>,
) -> std::result::Result<WasmtimeRuntime, WasmError> {
	// Create the engine, store and finally the module from the given code.
	let mut wasmtime_config = common_config(&config.semantics)?;
	if let Some(ref cache_path) = config.cache_path {
		if let Err(reason) = setup_wasmtime_caching(cache_path, &mut wasmtime_config) {
			log::warn!(
				"failed to setup wasmtime cache. Performance may degrade significantly: {}.",
				reason,
			);
		}
	}

	let engine = Engine::new(&wasmtime_config)
		.map_err(|e| WasmError::Other(format!("cannot create the engine for runtime: {}", e)))?;

	let (module, snapshot_data) = match code_supply_mode {
		CodeSupplyMode::Verbatim { blob } => {
			let blob = instrument(blob, &config.semantics)?;

			if config.semantics.fast_instance_reuse {
				let data_segments_snapshot = DataSegmentsSnapshot::take(&blob).map_err(|e| {
					WasmError::Other(format!("cannot take data segments snapshot: {}", e))
				})?;
				let data_segments_snapshot = Arc::new(data_segments_snapshot);

				let mutable_globals = ExposedMutableGlobalsSet::collect(&blob);

				let module = wasmtime::Module::new(&engine, &blob.serialize())
					.map_err(|e| WasmError::Other(format!("cannot create module: {}", e)))?;

				(module, Some(InstanceSnapshotData { data_segments_snapshot, mutable_globals }))
			} else {
				let module = wasmtime::Module::new(&engine, &blob.serialize())
					.map_err(|e| WasmError::Other(format!("cannot create module: {}", e)))?;
				(module, None)
			}
		},
		CodeSupplyMode::Artifact { compiled_artifact } => {
			// SAFETY: The unsafity of `deserialize` is covered by this function. The
			//         responsibilities to maintain the invariants are passed to the caller.
			let module = wasmtime::Module::deserialize(&engine, compiled_artifact)
				.map_err(|e| WasmError::Other(format!("cannot deserialize module: {}", e)))?;

			(module, None)
		},
	};

	Ok(WasmtimeRuntime { module: Arc::new(module), snapshot_data, config, host_functions, engine })
}

fn instrument(
	mut blob: RuntimeBlob,
	semantics: &Semantics,
) -> std::result::Result<RuntimeBlob, WasmError> {
	if let Some(DeterministicStackLimit { logical_max, .. }) = semantics.deterministic_stack_limit {
		blob = blob.inject_stack_depth_metering(logical_max)?;
	}

	// If enabled, this should happen after all other passes that may introduce global variables.
	if semantics.fast_instance_reuse {
		blob.expose_mutable_globals();
	}

	Ok(blob)
}

/// Takes a [`RuntimeBlob`] and precompiles it returning the serialized result of compilation. It
/// can then be used for calling [`create_runtime`] avoiding long compilation times.
pub fn prepare_runtime_artifact(
	blob: RuntimeBlob,
	semantics: &Semantics,
) -> std::result::Result<Vec<u8>, WasmError> {
	let blob = instrument(blob, semantics)?;

	let engine = Engine::new(&common_config(semantics)?)
		.map_err(|e| WasmError::Other(format!("cannot create the engine: {}", e)))?;

	engine
		.precompile_module(&blob.serialize())
		.map_err(|e| WasmError::Other(format!("cannot precompile module: {}", e)))
}

fn perform_call(
	data: &[u8],
	instance_wrapper: Rc<InstanceWrapper>,
	entrypoint: EntryPoint,
	mut allocator: FreeingBumpHeapAllocator,
) -> Result<Vec<u8>> {
	let (data_ptr, data_len) = inject_input_data(&instance_wrapper, &mut allocator, data)?;

	let host_state = HostState::new(allocator, instance_wrapper.clone());
	let ret = state_holder::with_initialized_state(&host_state, || -> Result<_> {
		Ok(unpack_ptr_and_len(entrypoint.call(data_ptr, data_len)?))
	});
	let (output_ptr, output_len) = ret?;
	let output = extract_output_data(&instance_wrapper, output_ptr, output_len)?;

	Ok(output)
}

fn inject_input_data(
	instance: &InstanceWrapper,
	allocator: &mut FreeingBumpHeapAllocator,
	data: &[u8],
) -> Result<(Pointer<u8>, WordSize)> {
	let data_len = data.len() as WordSize;
	let data_ptr = instance.allocate(allocator, data_len)?;
	instance.write_memory_from(data_ptr, data)?;
	Ok((data_ptr, data_len))
}

fn extract_output_data(
	instance: &InstanceWrapper,
	output_ptr: u32,
	output_len: u32,
) -> Result<Vec<u8>> {
	let mut output = vec![0; output_len as usize];
	instance.read_memory_into(Pointer::new(output_ptr), &mut output)?;
	Ok(output)
}