1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
#![cfg_attr(not(feature = "std"), no_std)]

// Make the WASM binary available.
#[cfg(feature = "std")]
include!(concat!(env!("OUT_DIR"), "/wasm_binary.rs"));

/// Wasm binary unwrapped. If built with `SKIP_WASM_BUILD`, the function panics.
#[cfg(feature = "std")]
pub fn wasm_binary_unwrap() -> &'static [u8] {
	WASM_BINARY.expect(
		"Development wasm binary is not available. Testing is only supported with the flag \
		 disabled.",
	)
}

#[cfg(not(feature = "std"))]
use sp_std::{vec, vec::Vec};

#[cfg(not(feature = "std"))]
use sp_core::{ed25519, sr25519};
#[cfg(not(feature = "std"))]
use sp_io::{
	crypto::{ed25519_verify, sr25519_verify},
	hashing::{blake2_128, blake2_256, sha2_256, twox_128, twox_256},
	storage, wasm_tracing,
};
#[cfg(not(feature = "std"))]
use sp_runtime::{
	print,
	traits::{BlakeTwo256, Hash},
};
#[cfg(not(feature = "std"))]
use sp_sandbox::Value;

extern "C" {
	#[allow(dead_code)]
	fn missing_external();

	#[allow(dead_code)]
	fn yet_another_missing_external();
}

#[cfg(not(feature = "std"))]
/// Mutable static variables should be always observed to have
/// the initialized value at the start of a runtime call.
static mut MUTABLE_STATIC: u64 = 32;

#[cfg(not(feature = "std"))]
/// This is similar to `MUTABLE_STATIC`. The tests need `MUTABLE_STATIC` for testing that
/// non-null initialization data is properly restored during instance reusing.
///
/// `MUTABLE_STATIC_BSS` on the other hand focuses on the zeroed data. This is important since there
/// may be differences in handling zeroed and non-zeroed data.
static mut MUTABLE_STATIC_BSS: u64 = 0;

sp_core::wasm_export_functions! {
   fn test_calling_missing_external() {
	   unsafe { missing_external() }
   }

   fn test_calling_yet_another_missing_external() {
	   unsafe { yet_another_missing_external() }
   }

   fn test_data_in(input: Vec<u8>) -> Vec<u8> {
	   print("set_storage");
	   storage::set(b"input", &input);

	   print("storage");
	   let foo = storage::get(b"foo").unwrap();

	   print("set_storage");
	   storage::set(b"baz", &foo);

	   print("finished!");
	   b"all ok!".to_vec()
   }

   fn test_clear_prefix(input: Vec<u8>) -> Vec<u8> {
	   storage::clear_prefix(&input, None);
	   b"all ok!".to_vec()
   }

   fn test_empty_return() {}

   fn test_dirty_plenty_memory(heap_base: u32, heap_pages: u32) {
	   // This piece of code will dirty multiple pages of memory. The number of pages is given by
	   // the `heap_pages`. It's unit is a wasm page (64KiB). The first page to be cleared
	   // is a wasm page that that follows the one that holds the `heap_base` address.
	   //
	   // This function dirties the **host** pages. I.e. we dirty 4KiB at a time and it will take
	   // 16 writes to process a single wasm page.

	   let mut heap_ptr = heap_base as usize;

	   // Find the next wasm page boundary.
	   let heap_ptr = round_up_to(heap_ptr, 65536);

	   // Make it an actual pointer
	   let heap_ptr = heap_ptr as *mut u8;

	   // Traverse the host pages and make each one dirty
	   let host_pages = heap_pages as usize * 16;
	   for i in 0..host_pages {
		   unsafe {
			   // technically this is an UB, but there is no way Rust can find this out.
			   heap_ptr.add(i * 4096).write(0);
		   }
	   }

	   fn round_up_to(n: usize, divisor: usize) -> usize {
		   (n + divisor - 1) / divisor
	   }
   }

   fn test_exhaust_heap() -> Vec<u8> { Vec::with_capacity(16777216) }

   fn test_fp_f32add(a: [u8; 4], b: [u8; 4]) -> [u8; 4] {
	   let a = f32::from_le_bytes(a);
	   let b = f32::from_le_bytes(b);
	   f32::to_le_bytes(a + b)
   }

   fn test_panic() { panic!("test panic") }

   fn test_conditional_panic(input: Vec<u8>) -> Vec<u8> {
	   if input.len() > 0 {
		   panic!("test panic")
	   }

	   input
   }

   fn test_blake2_256(input: Vec<u8>) -> Vec<u8> {
	   blake2_256(&input).to_vec()
   }

   fn test_blake2_128(input: Vec<u8>) -> Vec<u8> {
	   blake2_128(&input).to_vec()
   }

   fn test_sha2_256(input: Vec<u8>) -> Vec<u8> {
	   sha2_256(&input).to_vec()
   }

   fn test_twox_256(input: Vec<u8>) -> Vec<u8> {
	   twox_256(&input).to_vec()
   }

   fn test_twox_128(input: Vec<u8>) -> Vec<u8> {
	   twox_128(&input).to_vec()
   }

   fn test_ed25519_verify(input: Vec<u8>) -> bool {
	   let mut pubkey = [0; 32];
	   let mut sig = [0; 64];

	   pubkey.copy_from_slice(&input[0..32]);
	   sig.copy_from_slice(&input[32..96]);

	   let msg = b"all ok!";
	   ed25519_verify(&ed25519::Signature(sig), &msg[..], &ed25519::Public(pubkey))
   }

   fn test_sr25519_verify(input: Vec<u8>) -> bool {
	   let mut pubkey = [0; 32];
	   let mut sig = [0; 64];

	   pubkey.copy_from_slice(&input[0..32]);
	   sig.copy_from_slice(&input[32..96]);

	   let msg = b"all ok!";
	   sr25519_verify(&sr25519::Signature(sig), &msg[..], &sr25519::Public(pubkey))
   }

   fn test_ordered_trie_root() -> Vec<u8> {
	   BlakeTwo256::ordered_trie_root(
		   vec![
			   b"zero"[..].into(),
			   b"one"[..].into(),
			   b"two"[..].into(),
		   ],
	   ).as_ref().to_vec()
   }

   fn test_sandbox(code: Vec<u8>) -> bool {
	   execute_sandboxed(&code, &[]).is_ok()
   }

   fn test_sandbox_args(code: Vec<u8>) -> bool {
	   execute_sandboxed(
		   &code,
		   &[
			   Value::I32(0x12345678),
			   Value::I64(0x1234567887654321),
		   ],
	   ).is_ok()
   }

   fn test_sandbox_return_val(code: Vec<u8>) -> bool {
	   let ok = match execute_sandboxed(
		   &code,
		   &[
			   Value::I32(0x1336),
		   ]
	   ) {
		   Ok(sp_sandbox::ReturnValue::Value(Value::I32(0x1337))) => true,
		   _ => false,
	   };

	   ok
   }

   fn test_sandbox_instantiate(code: Vec<u8>) -> u8 {
	   let env_builder = sp_sandbox::EnvironmentDefinitionBuilder::new();
	   let code = match sp_sandbox::Instance::new(&code, &env_builder, &mut ()) {
		   Ok(_) => 0,
		   Err(sp_sandbox::Error::Module) => 1,
		   Err(sp_sandbox::Error::Execution) => 2,
		   Err(sp_sandbox::Error::OutOfBounds) => 3,
	   };

	   code
   }

   fn test_sandbox_get_global_val(code: Vec<u8>) -> i64 {
	   let env_builder = sp_sandbox::EnvironmentDefinitionBuilder::new();
	   let instance = if let Ok(i) = sp_sandbox::Instance::new(&code, &env_builder, &mut ()) {
		   i
	   } else {
		   return 20;
	   };

	   match instance.get_global_val("test_global") {
		   Some(sp_sandbox::Value::I64(val)) => val,
		   None => 30,
		   val => 40,
	   }
   }

   fn test_offchain_index_set() {
	   sp_io::offchain_index::set(b"k", b"v");
   }

   fn test_offchain_local_storage() -> bool {
	   let kind = sp_core::offchain::StorageKind::PERSISTENT;
	   assert_eq!(sp_io::offchain::local_storage_get(kind, b"test"), None);
	   sp_io::offchain::local_storage_set(kind, b"test", b"asd");
	   assert_eq!(sp_io::offchain::local_storage_get(kind, b"test"), Some(b"asd".to_vec()));

	   let res = sp_io::offchain::local_storage_compare_and_set(
		   kind,
		   b"test",
		   Some(b"asd".to_vec()),
		   b"",
	   );
	   assert_eq!(sp_io::offchain::local_storage_get(kind, b"test"), Some(b"".to_vec()));
	   res
   }

   fn test_offchain_local_storage_with_none() {
	   let kind = sp_core::offchain::StorageKind::PERSISTENT;
	   assert_eq!(sp_io::offchain::local_storage_get(kind, b"test"), None);

	   let res = sp_io::offchain::local_storage_compare_and_set(kind, b"test", None, b"value");
	   assert_eq!(res, true);
	   assert_eq!(sp_io::offchain::local_storage_get(kind, b"test"), Some(b"value".to_vec()));
   }

   fn test_offchain_http() -> bool {
	   use sp_core::offchain::HttpRequestStatus;
	   let run = || -> Option<()> {
		   let id = sp_io::offchain::http_request_start(
			   "POST",
			   "http://localhost:12345",
			   &[],
		   ).ok()?;
		   sp_io::offchain::http_request_add_header(id, "X-Auth", "test").ok()?;
		   sp_io::offchain::http_request_write_body(id, &[1, 2, 3, 4], None).ok()?;
		   sp_io::offchain::http_request_write_body(id, &[], None).ok()?;
		   let status = sp_io::offchain::http_response_wait(&[id], None);
		   assert!(status == vec![HttpRequestStatus::Finished(200)], "Expected Finished(200) status.");
		   let headers = sp_io::offchain::http_response_headers(id);
		   assert_eq!(headers, vec![(b"X-Auth".to_vec(), b"hello".to_vec())]);
		   let mut buffer = vec![0; 64];
		   let read = sp_io::offchain::http_response_read_body(id, &mut buffer, None).ok()?;
		   assert_eq!(read, 3);
		   assert_eq!(&buffer[0..read as usize], &[1, 2, 3]);
		   let read = sp_io::offchain::http_response_read_body(id, &mut buffer, None).ok()?;
		   assert_eq!(read, 0);

		   Some(())
	   };

	   run().is_some()
   }

   fn test_enter_span() -> u64 {
	   wasm_tracing::enter_span(Default::default())
   }

   fn test_exit_span(span_id: u64) {
	   wasm_tracing::exit(span_id)
   }

   fn test_nested_spans() {
	   sp_io::init_tracing();
	   let span_id = wasm_tracing::enter_span(Default::default());
	   {
		   sp_io::init_tracing();
		   let span_id = wasm_tracing::enter_span(Default::default());
		   wasm_tracing::exit(span_id);
	   }
	   wasm_tracing::exit(span_id);
   }

   fn returns_mutable_static() -> u64 {
	   unsafe {
		   MUTABLE_STATIC += 1;
		   MUTABLE_STATIC
	   }
   }

   fn returns_mutable_static_bss() -> u64 {
	   unsafe {
		   MUTABLE_STATIC_BSS += 1;
		   MUTABLE_STATIC_BSS
	   }
   }

   fn allocates_huge_stack_array(trap: bool) -> Vec<u8> {
	   // Allocate a stack frame that is approx. 75% of the stack (assuming it is 1MB).
	   // This will just decrease (stacks in wasm32-u-u grow downwards) the stack
	   // pointer. This won't trap on the current compilers.
	   let mut data = [0u8; 1024 * 768];

	   // Then make sure we actually write something to it.
	   //
	   // If:
	   // 1. the stack area is placed at the beginning of the linear memory space, and
	   // 2. the stack pointer points to out-of-bounds area, and
	   // 3. a write is performed around the current stack pointer.
	   //
	   // then a trap should happen.
	   //
	   for (i, v) in data.iter_mut().enumerate() {
		   *v = i as u8; // deliberate truncation
	   }

	   if trap {
		   // There is a small chance of this to be pulled up in theory. In practice
		   // the probability of that is rather low.
		   panic!()
	   }

	   data.to_vec()
   }

   // Check that the heap at `heap_base + offset` don't contains the test message.
   // After the check succeeds the test message is written into the heap.
   //
   // It is expected that the given pointer is not allocated.
   fn check_and_set_in_heap(heap_base: u32, offset: u32) {
	   let test_message = b"Hello invalid heap memory";
	   let ptr = unsafe { (heap_base + offset) as *mut u8 };

	   let message_slice = unsafe { sp_std::slice::from_raw_parts_mut(ptr, test_message.len()) };

	   assert_ne!(test_message, message_slice);
	   message_slice.copy_from_slice(test_message);
   }

   fn test_spawn() {
	   let data = vec![1u8, 2u8];
	   let data_new = sp_tasks::spawn(tasks::incrementer, data).join();

	   assert_eq!(data_new, vec![2u8, 3u8]);
   }

   fn test_nested_spawn() {
	   let data = vec![7u8, 13u8];
	   let data_new = sp_tasks::spawn(tasks::parallel_incrementer, data).join();

	   assert_eq!(data_new, vec![10u8, 16u8]);
   }

   fn test_panic_in_spawned() {
	   sp_tasks::spawn(tasks::panicker, vec![]).join();
   }
}

#[cfg(not(feature = "std"))]
mod tasks {
	use sp_std::prelude::*;

	pub fn incrementer(data: Vec<u8>) -> Vec<u8> {
		data.into_iter().map(|v| v + 1).collect()
	}

	pub fn panicker(_: Vec<u8>) -> Vec<u8> {
		panic!()
	}

	pub fn parallel_incrementer(data: Vec<u8>) -> Vec<u8> {
		let first = data.into_iter().map(|v| v + 2).collect::<Vec<_>>();
		let second = sp_tasks::spawn(incrementer, first).join();
		second
	}
}

#[cfg(not(feature = "std"))]
fn execute_sandboxed(
	code: &[u8],
	args: &[Value],
) -> Result<sp_sandbox::ReturnValue, sp_sandbox::HostError> {
	struct State {
		counter: u32,
	}

	fn env_assert(
		_e: &mut State,
		args: &[Value],
	) -> Result<sp_sandbox::ReturnValue, sp_sandbox::HostError> {
		if args.len() != 1 {
			return Err(sp_sandbox::HostError)
		}
		let condition = args[0].as_i32().ok_or_else(|| sp_sandbox::HostError)?;
		if condition != 0 {
			Ok(sp_sandbox::ReturnValue::Unit)
		} else {
			Err(sp_sandbox::HostError)
		}
	}
	fn env_inc_counter(
		e: &mut State,
		args: &[Value],
	) -> Result<sp_sandbox::ReturnValue, sp_sandbox::HostError> {
		if args.len() != 1 {
			return Err(sp_sandbox::HostError)
		}
		let inc_by = args[0].as_i32().ok_or_else(|| sp_sandbox::HostError)?;
		e.counter += inc_by as u32;
		Ok(sp_sandbox::ReturnValue::Value(Value::I32(e.counter as i32)))
	}

	let mut state = State { counter: 0 };

	let env_builder = {
		let mut env_builder = sp_sandbox::EnvironmentDefinitionBuilder::new();
		env_builder.add_host_func("env", "assert", env_assert);
		env_builder.add_host_func("env", "inc_counter", env_inc_counter);
		let memory = match sp_sandbox::Memory::new(1, Some(16)) {
			Ok(m) => m,
			Err(_) => unreachable!(
				"
				Memory::new() can return Err only if parameters are borked; \
				We passing params here explicitly and they're correct; \
				Memory::new() can't return a Error qed"
			),
		};
		env_builder.add_memory("env", "memory", memory);
		env_builder
	};

	let mut instance = sp_sandbox::Instance::new(code, &env_builder, &mut state)?;
	let result = instance.invoke("call", args, &mut state);

	result.map_err(|_| sp_sandbox::HostError)
}