1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
// This file is part of Substrate.

// Copyright (C) 2019-2021 Parity Technologies (UK) Ltd.
// SPDX-License-Identifier: Apache-2.0

// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// 	http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

//! Traits for dealing with the idea of membership.

use sp_std::{marker::PhantomData, prelude::*};

/// A trait for querying whether a type can be said to "contain" a value.
pub trait Contains<T> {
	/// Return `true` if this "contains" the given value `t`.
	fn contains(t: &T) -> bool;
}

/// A [`Contains`] implementation that contains every value.
pub enum Everything {}
impl<T> Contains<T> for Everything {
	fn contains(_: &T) -> bool {
		true
	}
}

/// A [`Contains`] implementation that contains no value.
pub enum Nothing {}
impl<T> Contains<T> for Nothing {
	fn contains(_: &T) -> bool {
		false
	}
}

#[deprecated = "Use `Everything` instead"]
pub type AllowAll = Everything;
#[deprecated = "Use `Nothing` instead"]
pub type DenyAll = Nothing;
#[deprecated = "Use `Contains` instead"]
pub trait Filter<T> {
	fn filter(t: &T) -> bool;
}
#[allow(deprecated)]
impl<T, C: Contains<T>> Filter<T> for C {
	fn filter(t: &T) -> bool {
		Self::contains(t)
	}
}

#[impl_trait_for_tuples::impl_for_tuples(30)]
impl<T> Contains<T> for Tuple {
	fn contains(t: &T) -> bool {
		for_tuples!( #(
			if Tuple::contains(t) { return true }
		)* );
		false
	}
}

/// Create a type which implements the `Contains` trait for a particular type with syntax similar
/// to `matches!`.
#[macro_export]
macro_rules! match_type {
	( pub type $n:ident: impl Contains<$t:ty> = { $phead:pat $( | $ptail:pat )* } ; ) => {
		pub struct $n;
		impl $crate::traits::Contains<$t> for $n {
			fn contains(l: &$t) -> bool {
				matches!(l, $phead $( | $ptail )* )
			}
		}
	}
}

#[cfg(test)]
mod tests {
	use super::*;

	match_type! {
		pub type OneOrTenToTwenty: impl Contains<u8> = { 1 | 10..=20 };
	}

	#[test]
	fn match_type_works() {
		for i in 0..=255 {
			assert_eq!(OneOrTenToTwenty::contains(&i), i == 1 || i >= 10 && i <= 20);
		}
	}
}

/// A trait for a set which can enumerate its members in order.
pub trait SortedMembers<T: Ord> {
	/// Get a vector of all members in the set, ordered.
	fn sorted_members() -> Vec<T>;

	/// Return `true` if this "contains" the given value `t`.
	fn contains(t: &T) -> bool {
		Self::sorted_members().binary_search(t).is_ok()
	}

	/// Get the number of items in the set.
	fn count() -> usize {
		Self::sorted_members().len()
	}

	/// Add an item that would satisfy `contains`. It does not make sure any other
	/// state is correctly maintained or generated.
	///
	/// **Should be used for benchmarking only!!!**
	#[cfg(feature = "runtime-benchmarks")]
	fn add(_t: &T) {
		unimplemented!()
	}
}

/// Adapter struct for turning an `OrderedMembership` impl into a `Contains` impl.
pub struct AsContains<OM>(PhantomData<(OM,)>);
impl<T: Ord + Eq, OM: SortedMembers<T>> Contains<T> for AsContains<OM> {
	fn contains(t: &T) -> bool {
		OM::contains(t)
	}
}

/// Trivial utility for implementing `Contains`/`OrderedMembership` with a `Vec`.
pub struct IsInVec<T>(PhantomData<T>);
impl<X: Eq, T: super::Get<Vec<X>>> Contains<X> for IsInVec<T> {
	fn contains(t: &X) -> bool {
		T::get().contains(t)
	}
}
impl<X: Ord + PartialOrd, T: super::Get<Vec<X>>> SortedMembers<X> for IsInVec<T> {
	fn sorted_members() -> Vec<X> {
		let mut r = T::get();
		r.sort();
		r
	}
}

/// A trait for querying bound for the length of an implementation of `Contains`
pub trait ContainsLengthBound {
	/// Minimum number of elements contained
	fn min_len() -> usize;
	/// Maximum number of elements contained
	fn max_len() -> usize;
}

/// Trait for type that can handle the initialization of account IDs at genesis.
pub trait InitializeMembers<AccountId> {
	/// Initialize the members to the given `members`.
	fn initialize_members(members: &[AccountId]);
}

impl<T> InitializeMembers<T> for () {
	fn initialize_members(_: &[T]) {}
}

/// Trait for type that can handle incremental changes to a set of account IDs.
pub trait ChangeMembers<AccountId: Clone + Ord> {
	/// A number of members `incoming` just joined the set and replaced some `outgoing` ones. The
	/// new set is given by `new`, and need not be sorted.
	///
	/// This resets any previous value of prime.
	fn change_members(incoming: &[AccountId], outgoing: &[AccountId], mut new: Vec<AccountId>) {
		new.sort();
		Self::change_members_sorted(incoming, outgoing, &new[..]);
	}

	/// A number of members `_incoming` just joined the set and replaced some `_outgoing` ones. The
	/// new set is thus given by `sorted_new` and **must be sorted**.
	///
	/// NOTE: This is the only function that needs to be implemented in `ChangeMembers`.
	///
	/// This resets any previous value of prime.
	fn change_members_sorted(
		incoming: &[AccountId],
		outgoing: &[AccountId],
		sorted_new: &[AccountId],
	);

	/// Set the new members; they **must already be sorted**. This will compute the diff and use it to
	/// call `change_members_sorted`.
	///
	/// This resets any previous value of prime.
	fn set_members_sorted(new_members: &[AccountId], old_members: &[AccountId]) {
		let (incoming, outgoing) = Self::compute_members_diff_sorted(new_members, old_members);
		Self::change_members_sorted(&incoming[..], &outgoing[..], &new_members);
	}

	/// Compute diff between new and old members; they **must already be sorted**.
	///
	/// Returns incoming and outgoing members.
	fn compute_members_diff_sorted(
		new_members: &[AccountId],
		old_members: &[AccountId],
	) -> (Vec<AccountId>, Vec<AccountId>) {
		let mut old_iter = old_members.iter();
		let mut new_iter = new_members.iter();
		let mut incoming = Vec::new();
		let mut outgoing = Vec::new();
		let mut old_i = old_iter.next();
		let mut new_i = new_iter.next();
		loop {
			match (old_i, new_i) {
				(None, None) => break,
				(Some(old), Some(new)) if old == new => {
					old_i = old_iter.next();
					new_i = new_iter.next();
				},
				(Some(old), Some(new)) if old < new => {
					outgoing.push(old.clone());
					old_i = old_iter.next();
				},
				(Some(old), None) => {
					outgoing.push(old.clone());
					old_i = old_iter.next();
				},
				(_, Some(new)) => {
					incoming.push(new.clone());
					new_i = new_iter.next();
				},
			}
		}
		(incoming, outgoing)
	}

	/// Set the prime member.
	fn set_prime(_prime: Option<AccountId>) {}

	/// Get the current prime.
	fn get_prime() -> Option<AccountId> {
		None
	}
}

impl<T: Clone + Ord> ChangeMembers<T> for () {
	fn change_members(_: &[T], _: &[T], _: Vec<T>) {}
	fn change_members_sorted(_: &[T], _: &[T], _: &[T]) {}
	fn set_members_sorted(_: &[T], _: &[T]) {}
	fn set_prime(_: Option<T>) {}
}