1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
// This file is part of Substrate.

// Copyright (C) 2020-2021 Parity Technologies (UK) Ltd.
// SPDX-License-Identifier: Apache-2.0

// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// 	http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

//! (very) Basic implementation of a graph node used in the reduce algorithm.

use sp_std::{cell::RefCell, fmt, prelude::*, rc::Rc};

/// The role that a node can accept.
#[derive(PartialEq, Eq, Ord, PartialOrd, Clone, Debug)]
pub(crate) enum NodeRole {
	/// A voter. This is synonym to a nominator in a staking context.
	Voter,
	/// A target. This is synonym to a candidate/validator in a staking context.
	Target,
}

pub(crate) type RefCellOf<T> = Rc<RefCell<T>>;
pub(crate) type NodeRef<A> = RefCellOf<Node<A>>;

/// Identifier of a node. This is particularly handy to have a proper `PartialEq` implementation.
/// Otherwise, self votes wouldn't have been indistinguishable.
#[derive(PartialOrd, Ord, Clone, PartialEq, Eq)]
pub(crate) struct NodeId<A> {
	/// An account-like identifier representing the node.
	pub who: A,
	/// The role of the node.
	pub role: NodeRole,
}

impl<A> NodeId<A> {
	/// Create a new [`NodeId`].
	pub fn from(who: A, role: NodeRole) -> Self {
		Self { who, role }
	}
}

#[cfg(feature = "std")]
impl<A: fmt::Debug> sp_std::fmt::Debug for NodeId<A> {
	fn fmt(&self, f: &mut fmt::Formatter<'_>) -> sp_std::fmt::Result {
		write!(
			f,
			"Node({:?}, {:?})",
			self.who,
			if self.role == NodeRole::Voter { "V" } else { "T" }
		)
	}
}

/// A one-way graph note. This can only store a pointer to its parent.
#[derive(Clone)]
pub(crate) struct Node<A> {
	/// The identifier of the note.
	pub(crate) id: NodeId<A>,
	/// The parent pointer.
	pub(crate) parent: Option<NodeRef<A>>,
}

impl<A: PartialEq> PartialEq for Node<A> {
	fn eq(&self, other: &Node<A>) -> bool {
		self.id == other.id
	}
}

impl<A: PartialEq> Eq for Node<A> {}

#[cfg(feature = "std")]
impl<A: fmt::Debug + Clone> fmt::Debug for Node<A> {
	fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
		write!(f, "({:?} --> {:?})", self.id, self.parent.as_ref().map(|p| p.borrow().id.clone()))
	}
}

impl<A: PartialEq + Eq + Clone + fmt::Debug> Node<A> {
	/// Create a new [`Node`]
	pub fn new(id: NodeId<A>) -> Node<A> {
		Self { id, parent: None }
	}

	/// Returns true if `other` is the parent of `who`.
	pub fn is_parent_of(who: &NodeRef<A>, other: &NodeRef<A>) -> bool {
		if who.borrow().parent.is_none() {
			return false
		}
		who.borrow().parent.as_ref() == Some(other)
	}

	/// Removes the parent of `who`.
	pub fn remove_parent(who: &NodeRef<A>) {
		who.borrow_mut().parent = None;
	}

	/// Sets `who`'s parent to be `parent`.
	pub fn set_parent_of(who: &NodeRef<A>, parent: &NodeRef<A>) {
		who.borrow_mut().parent = Some(parent.clone());
	}

	/// Finds the root of `start`. It return a tuple of `(root, root_vec)` where `root_vec` is the
	/// vector of Nodes leading to the root. Hence the first element is the start itself and the
	/// last one is the root. As convenient, the root itself is also returned as the first element
	/// of the tuple.
	///
	/// This function detects cycles and breaks as soon a duplicate node is visited, returning the
	/// cycle up to but not including the duplicate node.
	///
	/// If you are certain that no cycles exist, you can use [`root_unchecked`].
	pub fn root(start: &NodeRef<A>) -> (NodeRef<A>, Vec<NodeRef<A>>) {
		let mut parent_path: Vec<NodeRef<A>> = Vec::new();
		let mut visited: Vec<NodeRef<A>> = Vec::new();

		parent_path.push(start.clone());
		visited.push(start.clone());
		let mut current = start.clone();

		while let Some(ref next_parent) = current.clone().borrow().parent {
			if visited.contains(next_parent) {
				break
			}
			parent_path.push(next_parent.clone());
			current = next_parent.clone();
			visited.push(current.clone());
		}

		(current, parent_path)
	}

	/// Consumes self and wraps it in a `Rc<RefCell<T>>`. This type can be used as the pointer type
	/// to a parent node.
	pub fn into_ref(self) -> NodeRef<A> {
		Rc::from(RefCell::from(self))
	}
}

#[cfg(test)]
mod tests {
	use super::*;

	fn id(i: u32) -> NodeId<u32> {
		NodeId::from(i, NodeRole::Target)
	}

	#[test]
	fn basic_create_works() {
		let node = Node::new(id(10));
		assert_eq!(node, Node { id: NodeId { who: 10, role: NodeRole::Target }, parent: None });
	}

	#[test]
	fn set_parent_works() {
		let a = Node::new(id(10)).into_ref();
		let b = Node::new(id(20)).into_ref();

		assert_eq!(a.borrow().parent, None);
		Node::set_parent_of(&a, &b);
		assert_eq!(*a.borrow().parent.as_ref().unwrap(), b);
	}

	#[test]
	fn get_root_singular() {
		let a = Node::new(id(1)).into_ref();
		assert_eq!(Node::root(&a), (a.clone(), vec![a.clone()]));
	}

	#[test]
	fn get_root_works() {
		// 	D <-- A <-- B <-- C
		// 			\
		// 			 <-- E
		let a = Node::new(id(1)).into_ref();
		let b = Node::new(id(2)).into_ref();
		let c = Node::new(id(3)).into_ref();
		let d = Node::new(id(4)).into_ref();
		let e = Node::new(id(5)).into_ref();
		let f = Node::new(id(6)).into_ref();

		Node::set_parent_of(&c, &b);
		Node::set_parent_of(&b, &a);
		Node::set_parent_of(&e, &a);
		Node::set_parent_of(&a, &d);

		assert_eq!(Node::root(&e), (d.clone(), vec![e.clone(), a.clone(), d.clone()]));

		assert_eq!(Node::root(&a), (d.clone(), vec![a.clone(), d.clone()]));

		assert_eq!(Node::root(&c), (d.clone(), vec![c.clone(), b.clone(), a.clone(), d.clone()]));

		// 	D 	    A <-- B <-- C
		// 	F <-- /	\
		// 			 <-- E
		Node::set_parent_of(&a, &f);

		assert_eq!(Node::root(&a), (f.clone(), vec![a.clone(), f.clone()]));

		assert_eq!(Node::root(&c), (f.clone(), vec![c.clone(), b.clone(), a.clone(), f.clone()]));
	}

	#[test]
	fn get_root_on_cycle() {
		// A ---> B
		// |      |
		//  <---- C
		let a = Node::new(id(1)).into_ref();
		let b = Node::new(id(2)).into_ref();
		let c = Node::new(id(3)).into_ref();

		Node::set_parent_of(&a, &b);
		Node::set_parent_of(&b, &c);
		Node::set_parent_of(&c, &a);

		let (root, path) = Node::root(&a);
		assert_eq!(root, c);
		assert_eq!(path.clone(), vec![a.clone(), b.clone(), c.clone()]);
	}

	#[test]
	fn get_root_on_cycle_2() {
		// A ---> B
		// |   |  |
		//     - C
		let a = Node::new(id(1)).into_ref();
		let b = Node::new(id(2)).into_ref();
		let c = Node::new(id(3)).into_ref();

		Node::set_parent_of(&a, &b);
		Node::set_parent_of(&b, &c);
		Node::set_parent_of(&c, &b);

		let (root, path) = Node::root(&a);
		assert_eq!(root, c);
		assert_eq!(path.clone(), vec![a.clone(), b.clone(), c.clone()]);
	}

	#[test]
	fn node_cmp_stack_overflows_on_non_unique_elements() {
		// To make sure we don't stack overflow on duplicate who. This needs manual impl of
		// PartialEq.
		let a = Node::new(id(1)).into_ref();
		let b = Node::new(id(2)).into_ref();
		let c = Node::new(id(3)).into_ref();

		Node::set_parent_of(&a, &b);
		Node::set_parent_of(&b, &c);
		Node::set_parent_of(&c, &a);

		Node::root(&a);
	}
}