1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
// This file is part of Substrate.

// Copyright (C) 2021 Parity Technologies (UK) Ltd.
// SPDX-License-Identifier: Apache-2.0

// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// 	http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#![cfg_attr(not(feature = "std"), no_std)]

//! Useful function for inflation for nominated proof of stake.

use core::convert::TryFrom;
use sp_arithmetic::{
	biguint::BigUint,
	traits::{SaturatedConversion, Zero},
	PerThing, Perquintill,
};

/// Compute yearly inflation using function
///
/// ```ignore
/// I(x) = for x between 0 and x_ideal: x / x_ideal,
/// for x between x_ideal and 1: 2^((x_ideal - x) / d)
/// ```
///
/// where:
/// * x is the stake rate, i.e. fraction of total issued tokens that actively staked behind
///   validators.
/// * d is the falloff or `decay_rate`
/// * x_ideal: the ideal stake rate.
///
/// The result is meant to be scaled with minimum inflation and maximum inflation.
///
/// (as detailed
/// [here](https://research.web3.foundation/en/latest/polkadot/economics/1-token-economics.html#inflation-model-with-parachains))
///
/// Arguments are:
/// * `stake`: The fraction of total issued tokens that actively staked behind validators. Known as
///   `x` in the literature. Must be between 0 and 1.
/// * `ideal_stake`: The fraction of total issued tokens that should be actively staked behind
///   validators. Known as `x_ideal` in the literature. Must be between 0 and 1.
/// * `falloff`: Known as `decay_rate` in the literature. A co-efficient dictating the strength of
///   the global incentivization to get the `ideal_stake`. A higher number results in less typical
///   inflation at the cost of greater volatility for validators. Must be more than 0.01.
pub fn compute_inflation<P: PerThing>(stake: P, ideal_stake: P, falloff: P) -> P {
	if stake < ideal_stake {
		// ideal_stake is more than 0 because it is strictly more than stake
		return stake / ideal_stake
	}

	if falloff < P::from_percent(1.into()) {
		log::error!("Invalid inflation computation: falloff less than 1% is not supported");
		return PerThing::zero()
	}

	let accuracy = {
		let mut a = BigUint::from(Into::<u128>::into(P::ACCURACY));
		a.lstrip();
		a
	};

	let mut falloff = BigUint::from(falloff.deconstruct().into());
	falloff.lstrip();

	let ln2 = {
		/// `ln(2)` expressed in as perquintillionth.
		const LN2: u64 = 0_693_147_180_559_945_309;
		let ln2 = P::from_rational(LN2.into(), Perquintill::ACCURACY.into());
		BigUint::from(ln2.deconstruct().into())
	};

	// falloff is stripped above.
	let ln2_div_d = div_by_stripped(ln2.mul(&accuracy), &falloff);

	let inpos_param = INPoSParam {
		x_ideal: BigUint::from(ideal_stake.deconstruct().into()),
		x: BigUint::from(stake.deconstruct().into()),
		accuracy,
		ln2_div_d,
	};

	let res = compute_taylor_serie_part(&inpos_param);

	match u128::try_from(res.clone()) {
		Ok(res) if res <= Into::<u128>::into(P::ACCURACY) => P::from_parts(res.saturated_into()),
		// If result is beyond bounds there is nothing we can do
		_ => {
			log::error!("Invalid inflation computation: unexpected result {:?}", res);
			P::zero()
		},
	}
}

/// Internal struct holding parameter info alongside other cached value.
///
/// All expressed in part from `accuracy`
struct INPoSParam {
	ln2_div_d: BigUint,
	x_ideal: BigUint,
	x: BigUint,
	/// Must be stripped and have no leading zeros.
	accuracy: BigUint,
}

/// Compute `2^((x_ideal - x) / d)` using taylor serie.
///
/// x must be strictly more than x_ideal.
///
/// result is expressed with accuracy `INPoSParam.accuracy`
fn compute_taylor_serie_part(p: &INPoSParam) -> BigUint {
	// The last computed taylor term.
	let mut last_taylor_term = p.accuracy.clone();

	// Whereas taylor sum is positive.
	let mut taylor_sum_positive = true;

	// The sum of all taylor term.
	let mut taylor_sum = last_taylor_term.clone();

	for k in 1..300 {
		last_taylor_term = compute_taylor_term(k, &last_taylor_term, p);

		if last_taylor_term.is_zero() {
			break
		}

		let last_taylor_term_positive = k % 2 == 0;

		if taylor_sum_positive == last_taylor_term_positive {
			taylor_sum = taylor_sum.add(&last_taylor_term);
		} else {
			if taylor_sum >= last_taylor_term {
				taylor_sum = taylor_sum
					.sub(&last_taylor_term)
					// NOTE: Should never happen as checked above
					.unwrap_or_else(|e| e);
			} else {
				taylor_sum_positive = !taylor_sum_positive;
				taylor_sum = last_taylor_term
					.clone()
					.sub(&taylor_sum)
					// NOTE: Should never happen as checked above
					.unwrap_or_else(|e| e);
			}
		}
	}

	if !taylor_sum_positive {
		return BigUint::zero()
	}

	taylor_sum.lstrip();
	taylor_sum
}

/// Return the absolute value of k-th taylor term of `2^((x_ideal - x))/d` i.e.
/// `((x - x_ideal) * ln(2) / d)^k / k!`
///
/// x must be strictly more x_ideal.
///
/// We compute the term from the last term using this formula:
///
/// `((x - x_ideal) * ln(2) / d)^k / k! == previous_term * (x - x_ideal) * ln(2) / d / k`
///
/// `previous_taylor_term` and result are expressed with accuracy `INPoSParam.accuracy`
fn compute_taylor_term(k: u32, previous_taylor_term: &BigUint, p: &INPoSParam) -> BigUint {
	let x_minus_x_ideal =
		p.x.clone()
			.sub(&p.x_ideal)
			// NOTE: Should never happen, as x must be more than x_ideal
			.unwrap_or_else(|_| BigUint::zero());

	let res = previous_taylor_term.clone().mul(&x_minus_x_ideal).mul(&p.ln2_div_d).div_unit(k);

	// p.accuracy is stripped by definition.
	let res = div_by_stripped(res, &p.accuracy);
	let mut res = div_by_stripped(res, &p.accuracy);

	res.lstrip();
	res
}

/// Compute a div b.
///
/// requires `b` to be stripped and have no leading zeros.
fn div_by_stripped(mut a: BigUint, b: &BigUint) -> BigUint {
	a.lstrip();

	if b.len() == 0 {
		log::error!("Computation error: Invalid division");
		return BigUint::zero()
	}

	if b.len() == 1 {
		return a.div_unit(b.checked_get(0).unwrap_or(1))
	}

	if b.len() > a.len() {
		return BigUint::zero()
	}

	if b.len() == a.len() {
		// 100_000^2 is more than 2^32-1, thus `new_a` has more limbs than `b`.
		let mut new_a = a.mul(&BigUint::from(100_000u64.pow(2)));
		new_a.lstrip();

		debug_assert!(new_a.len() > b.len());
		return new_a
			.div(b, false)
			.map(|res| res.0)
			.unwrap_or_else(|| BigUint::zero())
			.div_unit(100_000)
			.div_unit(100_000)
	}

	a.div(b, false).map(|res| res.0).unwrap_or_else(|| BigUint::zero())
}