1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
// This file is part of Substrate.

// Copyright (C) 2019-2021 Parity Technologies (UK) Ltd.
// SPDX-License-Identifier: Apache-2.0

// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// 	http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

//! Utility library for managing tree-like ordered data with logic for pruning
//! the tree while finalizing nodes.

#![warn(missing_docs)]

use codec::{Decode, Encode};
use std::{cmp::Reverse, fmt};

/// Error occurred when iterating with the tree.
#[derive(Clone, Debug, PartialEq)]
pub enum Error<E> {
	/// Adding duplicate node to tree.
	Duplicate,
	/// Finalizing descendent of tree node without finalizing ancestor(s).
	UnfinalizedAncestor,
	/// Imported or finalized node that is an ancestor of previously finalized node.
	Revert,
	/// Error throw by client when checking for node ancestry.
	Client(E),
}

impl<E: std::error::Error> fmt::Display for Error<E> {
	fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
		let message = match *self {
			Error::Duplicate => "Hash already exists in Tree".into(),
			Error::UnfinalizedAncestor => "Finalized descendent of Tree node without finalizing its ancestor(s) first".into(),
			Error::Revert => "Tried to import or finalize node that is an ancestor of a previously finalized node".into(),
			Error::Client(ref err) => format!("Client error: {}", err),
		};
		write!(f, "{}", message)
	}
}

impl<E: std::error::Error> std::error::Error for Error<E> {
	fn cause(&self) -> Option<&dyn std::error::Error> {
		None
	}
}

impl<E: std::error::Error> From<E> for Error<E> {
	fn from(err: E) -> Error<E> {
		Error::Client(err)
	}
}

/// Result of finalizing a node (that could be a part of the tree or not).
#[derive(Debug, PartialEq)]
pub enum FinalizationResult<V> {
	/// The tree has changed, optionally return the value associated with the finalized node.
	Changed(Option<V>),
	/// The tree has not changed.
	Unchanged,
}

/// A tree data structure that stores several nodes across multiple branches.
/// Top-level branches are called roots. The tree has functionality for
/// finalizing nodes, which means that that node is traversed, and all competing
/// branches are pruned. It also guarantees that nodes in the tree are finalized
/// in order. Each node is uniquely identified by its hash but can be ordered by
/// its number. In order to build the tree an external function must be provided
/// when interacting with the tree to establish a node's ancestry.
#[derive(Clone, Debug, Decode, Encode, PartialEq)]
pub struct ForkTree<H, N, V> {
	roots: Vec<Node<H, N, V>>,
	best_finalized_number: Option<N>,
}

impl<H, N, V> ForkTree<H, N, V>
where
	H: PartialEq + Clone,
	N: Ord + Clone,
	V: Clone,
{
	/// Prune the tree, removing all non-canonical nodes. We find the node in the
	/// tree that is the deepest ancestor of the given hash and that passes the
	/// given predicate. If such a node exists, we re-root the tree to this
	/// node. Otherwise the tree remains unchanged. The given function
	/// `is_descendent_of` should return `true` if the second hash (target) is a
	/// descendent of the first hash (base).
	///
	/// Returns all pruned node data.
	pub fn prune<F, E, P>(
		&mut self,
		hash: &H,
		number: &N,
		is_descendent_of: &F,
		predicate: &P,
	) -> Result<impl Iterator<Item = (H, N, V)>, Error<E>>
	where
		E: std::error::Error,
		F: Fn(&H, &H) -> Result<bool, E>,
		P: Fn(&V) -> bool,
	{
		let new_root_index =
			self.find_node_index_where(hash, number, is_descendent_of, predicate)?;

		let removed = if let Some(mut root_index) = new_root_index {
			let mut old_roots = std::mem::take(&mut self.roots);

			let mut root = None;
			let mut cur_children = Some(&mut old_roots);

			while let Some(cur_index) = root_index.pop() {
				if let Some(children) = cur_children.take() {
					if root_index.is_empty() {
						root = Some(children.remove(cur_index));
					} else {
						cur_children = Some(&mut children[cur_index].children);
					}
				}
			}

			let mut root = root.expect(
				"find_node_index_where will return array with at least one index; \
						 this results in at least one item in removed; qed",
			);

			let mut removed = old_roots;

			// we found the deepest ancestor of the finalized block, so we prune
			// out any children that don't include the finalized block.
			let root_children = std::mem::take(&mut root.children);
			let mut is_first = true;

			for child in root_children {
				if is_first &&
					(child.number == *number && child.hash == *hash ||
						child.number < *number && is_descendent_of(&child.hash, hash)?)
				{
					root.children.push(child);
					// assuming that the tree is well formed only one child should pass this
					// requirement due to ancestry restrictions (i.e. they must be different forks).
					is_first = false;
				} else {
					removed.push(child);
				}
			}

			self.roots = vec![root];

			removed
		} else {
			Vec::new()
		};

		self.rebalance();

		Ok(RemovedIterator { stack: removed })
	}
}

impl<H, N, V> ForkTree<H, N, V>
where
	H: PartialEq,
	N: Ord,
{
	/// Create a new empty tree.
	pub fn new() -> ForkTree<H, N, V> {
		ForkTree { roots: Vec::new(), best_finalized_number: None }
	}

	/// Rebalance the tree, i.e. sort child nodes by max branch depth
	/// (decreasing).
	///
	/// Most operations in the tree are performed with depth-first search
	/// starting from the leftmost node at every level, since this tree is meant
	/// to be used in a blockchain context, a good heuristic is that the node
	/// we'll be looking
	/// for at any point will likely be in one of the deepest chains (i.e. the
	/// longest ones).
	pub fn rebalance(&mut self) {
		self.roots.sort_by_key(|n| Reverse(n.max_depth()));
		for root in &mut self.roots {
			root.rebalance();
		}
	}

	/// Import a new node into the tree. The given function `is_descendent_of`
	/// should return `true` if the second hash (target) is a descendent of the
	/// first hash (base). This method assumes that nodes in the same branch are
	/// imported in order.
	///
	/// Returns `true` if the imported node is a root.
	pub fn import<F, E>(
		&mut self,
		mut hash: H,
		mut number: N,
		mut data: V,
		is_descendent_of: &F,
	) -> Result<bool, Error<E>>
	where
		E: std::error::Error,
		F: Fn(&H, &H) -> Result<bool, E>,
	{
		if let Some(ref best_finalized_number) = self.best_finalized_number {
			if number <= *best_finalized_number {
				return Err(Error::Revert)
			}
		}

		for root in self.roots.iter_mut() {
			if root.hash == hash {
				return Err(Error::Duplicate)
			}

			match root.import(hash, number, data, is_descendent_of)? {
				Some((h, n, d)) => {
					hash = h;
					number = n;
					data = d;
				},
				None => {
					self.rebalance();
					return Ok(false)
				},
			}
		}

		self.roots.push(Node { data, hash, number, children: Vec::new() });

		self.rebalance();

		Ok(true)
	}

	/// Iterates over the existing roots in the tree.
	pub fn roots(&self) -> impl Iterator<Item = (&H, &N, &V)> {
		self.roots.iter().map(|node| (&node.hash, &node.number, &node.data))
	}

	fn node_iter(&self) -> impl Iterator<Item = &Node<H, N, V>> {
		// we need to reverse the order of roots to maintain the expected
		// ordering since the iterator uses a stack to track state.
		ForkTreeIterator { stack: self.roots.iter().rev().collect() }
	}

	/// Iterates the nodes in the tree in pre-order.
	pub fn iter(&self) -> impl Iterator<Item = (&H, &N, &V)> {
		self.node_iter().map(|node| (&node.hash, &node.number, &node.data))
	}

	/// Find a node in the tree that is the deepest ancestor of the given
	/// block hash and which passes the given predicate. The given function
	/// `is_descendent_of` should return `true` if the second hash (target)
	/// is a descendent of the first hash (base).
	pub fn find_node_where<F, E, P>(
		&self,
		hash: &H,
		number: &N,
		is_descendent_of: &F,
		predicate: &P,
	) -> Result<Option<&Node<H, N, V>>, Error<E>>
	where
		E: std::error::Error,
		F: Fn(&H, &H) -> Result<bool, E>,
		P: Fn(&V) -> bool,
	{
		// search for node starting from all roots
		for root in self.roots.iter() {
			let node = root.find_node_where(hash, number, is_descendent_of, predicate)?;

			// found the node, early exit
			if let FindOutcome::Found(node) = node {
				return Ok(Some(node))
			}
		}

		Ok(None)
	}

	/// Map fork tree into values of new types.
	pub fn map<VT, F>(self, f: &mut F) -> ForkTree<H, N, VT>
	where
		F: FnMut(&H, &N, V) -> VT,
	{
		let roots = self.roots.into_iter().map(|root| root.map(f)).collect();

		ForkTree { roots, best_finalized_number: self.best_finalized_number }
	}

	/// Same as [`find_node_where`](ForkTree::find_node_where), but returns mutable reference.
	pub fn find_node_where_mut<F, E, P>(
		&mut self,
		hash: &H,
		number: &N,
		is_descendent_of: &F,
		predicate: &P,
	) -> Result<Option<&mut Node<H, N, V>>, Error<E>>
	where
		E: std::error::Error,
		F: Fn(&H, &H) -> Result<bool, E>,
		P: Fn(&V) -> bool,
	{
		// search for node starting from all roots
		for root in self.roots.iter_mut() {
			let node = root.find_node_where_mut(hash, number, is_descendent_of, predicate)?;

			// found the node, early exit
			if let FindOutcome::Found(node) = node {
				return Ok(Some(node))
			}
		}

		Ok(None)
	}

	/// Same as [`find_node_where`](ForkTree::find_node_where), but returns indexes.
	pub fn find_node_index_where<F, E, P>(
		&self,
		hash: &H,
		number: &N,
		is_descendent_of: &F,
		predicate: &P,
	) -> Result<Option<Vec<usize>>, Error<E>>
	where
		E: std::error::Error,
		F: Fn(&H, &H) -> Result<bool, E>,
		P: Fn(&V) -> bool,
	{
		// search for node starting from all roots
		for (index, root) in self.roots.iter().enumerate() {
			let node = root.find_node_index_where(hash, number, is_descendent_of, predicate)?;

			// found the node, early exit
			if let FindOutcome::Found(mut node) = node {
				node.push(index);
				return Ok(Some(node))
			}
		}

		Ok(None)
	}

	/// Finalize a root in the tree and return it, return `None` in case no root
	/// with the given hash exists. All other roots are pruned, and the children
	/// of the finalized node become the new roots.
	pub fn finalize_root(&mut self, hash: &H) -> Option<V> {
		self.roots
			.iter()
			.position(|node| node.hash == *hash)
			.map(|position| self.finalize_root_at(position))
	}

	/// Finalize root at given position. See `finalize_root` comment for details.
	fn finalize_root_at(&mut self, position: usize) -> V {
		let node = self.roots.swap_remove(position);
		self.roots = node.children;
		self.best_finalized_number = Some(node.number);
		return node.data
	}

	/// Finalize a node in the tree. This method will make sure that the node
	/// being finalized is either an existing root (and return its data), or a
	/// node from a competing branch (not in the tree), tree pruning is done
	/// accordingly. The given function `is_descendent_of` should return `true`
	/// if the second hash (target) is a descendent of the first hash (base).
	pub fn finalize<F, E>(
		&mut self,
		hash: &H,
		number: N,
		is_descendent_of: &F,
	) -> Result<FinalizationResult<V>, Error<E>>
	where
		E: std::error::Error,
		F: Fn(&H, &H) -> Result<bool, E>,
	{
		if let Some(ref best_finalized_number) = self.best_finalized_number {
			if number <= *best_finalized_number {
				return Err(Error::Revert)
			}
		}

		// check if one of the current roots is being finalized
		if let Some(root) = self.finalize_root(hash) {
			return Ok(FinalizationResult::Changed(Some(root)))
		}

		// make sure we're not finalizing a descendent of any root
		for root in self.roots.iter() {
			if number > root.number && is_descendent_of(&root.hash, hash)? {
				return Err(Error::UnfinalizedAncestor)
			}
		}

		// we finalized a block earlier than any existing root (or possibly
		// another fork not part of the tree). make sure to only keep roots that
		// are part of the finalized branch
		let mut changed = false;
		let roots = std::mem::take(&mut self.roots);

		for root in roots {
			if root.number > number && is_descendent_of(hash, &root.hash)? {
				self.roots.push(root);
			} else {
				changed = true;
			}
		}

		self.best_finalized_number = Some(number);

		if changed {
			Ok(FinalizationResult::Changed(None))
		} else {
			Ok(FinalizationResult::Unchanged)
		}
	}

	/// Finalize a node in the tree and all its ancestors. The given function
	/// `is_descendent_of` should return `true` if the second hash (target) is
	// a descendent of the first hash (base).
	pub fn finalize_with_ancestors<F, E>(
		&mut self,
		hash: &H,
		number: N,
		is_descendent_of: &F,
	) -> Result<FinalizationResult<V>, Error<E>>
	where
		E: std::error::Error,
		F: Fn(&H, &H) -> Result<bool, E>,
	{
		if let Some(ref best_finalized_number) = self.best_finalized_number {
			if number <= *best_finalized_number {
				return Err(Error::Revert)
			}
		}

		// check if one of the current roots is being finalized
		if let Some(root) = self.finalize_root(hash) {
			return Ok(FinalizationResult::Changed(Some(root)))
		}

		// we need to:
		// 1) remove all roots that are not ancestors AND not descendants of finalized block;
		// 2) if node is descendant - just leave it;
		// 3) if node is ancestor - 'open it'
		let mut changed = false;
		let mut idx = 0;
		while idx != self.roots.len() {
			let (is_finalized, is_descendant, is_ancestor) = {
				let root = &self.roots[idx];
				let is_finalized = root.hash == *hash;
				let is_descendant =
					!is_finalized && root.number > number && is_descendent_of(hash, &root.hash)?;
				let is_ancestor = !is_finalized &&
					!is_descendant && root.number < number &&
					is_descendent_of(&root.hash, hash)?;
				(is_finalized, is_descendant, is_ancestor)
			};

			// if we have met finalized root - open it and return
			if is_finalized {
				return Ok(FinalizationResult::Changed(Some(self.finalize_root_at(idx))))
			}

			// if node is descendant of finalized block - just leave it as is
			if is_descendant {
				idx += 1;
				continue
			}

			// if node is ancestor of finalized block - remove it and continue with children
			if is_ancestor {
				let root = self.roots.swap_remove(idx);
				self.roots.extend(root.children);
				changed = true;
				continue
			}

			// if node is neither ancestor, nor descendant of the finalized block - remove it
			self.roots.swap_remove(idx);
			changed = true;
		}

		self.best_finalized_number = Some(number);

		if changed {
			Ok(FinalizationResult::Changed(None))
		} else {
			Ok(FinalizationResult::Unchanged)
		}
	}

	/// Checks if any node in the tree is finalized by either finalizing the
	/// node itself or a child node that's not in the tree, guaranteeing that
	/// the node being finalized isn't a descendent of any of the node's
	/// children. Returns `Some(true)` if the node being finalized is a root,
	/// `Some(false)` if the node being finalized is not a root, and `None` if
	/// no node in the tree is finalized. The given `predicate` is checked on
	/// the prospective finalized root and must pass for finalization to occur.
	/// The given function `is_descendent_of` should return `true` if the second
	/// hash (target) is a descendent of the first hash (base).
	pub fn finalizes_any_with_descendent_if<F, P, E>(
		&self,
		hash: &H,
		number: N,
		is_descendent_of: &F,
		predicate: P,
	) -> Result<Option<bool>, Error<E>>
	where
		E: std::error::Error,
		F: Fn(&H, &H) -> Result<bool, E>,
		P: Fn(&V) -> bool,
	{
		if let Some(ref best_finalized_number) = self.best_finalized_number {
			if number <= *best_finalized_number {
				return Err(Error::Revert)
			}
		}

		// check if the given hash is equal or a descendent of any node in the
		// tree, if we find a valid node that passes the predicate then we must
		// ensure that we're not finalizing past any of its child nodes.
		for node in self.node_iter() {
			if predicate(&node.data) {
				if node.hash == *hash || is_descendent_of(&node.hash, hash)? {
					for node in node.children.iter() {
						if node.number <= number && is_descendent_of(&node.hash, &hash)? {
							return Err(Error::UnfinalizedAncestor)
						}
					}

					return Ok(Some(self.roots.iter().any(|root| root.hash == node.hash)))
				}
			}
		}

		Ok(None)
	}

	/// Finalize a root in the tree by either finalizing the node itself or a
	/// child node that's not in the tree, guaranteeing that the node being
	/// finalized isn't a descendent of any of the root's children. The given
	/// `predicate` is checked on the prospective finalized root and must pass for
	/// finalization to occur. The given function `is_descendent_of` should
	/// return `true` if the second hash (target) is a descendent of the first
	/// hash (base).
	pub fn finalize_with_descendent_if<F, P, E>(
		&mut self,
		hash: &H,
		number: N,
		is_descendent_of: &F,
		predicate: P,
	) -> Result<FinalizationResult<V>, Error<E>>
	where
		E: std::error::Error,
		F: Fn(&H, &H) -> Result<bool, E>,
		P: Fn(&V) -> bool,
	{
		if let Some(ref best_finalized_number) = self.best_finalized_number {
			if number <= *best_finalized_number {
				return Err(Error::Revert)
			}
		}

		// check if the given hash is equal or a a descendent of any root, if we
		// find a valid root that passes the predicate then we must ensure that
		// we're not finalizing past any children node.
		let mut position = None;
		for (i, root) in self.roots.iter().enumerate() {
			if predicate(&root.data) {
				if root.hash == *hash || is_descendent_of(&root.hash, hash)? {
					for node in root.children.iter() {
						if node.number <= number && is_descendent_of(&node.hash, &hash)? {
							return Err(Error::UnfinalizedAncestor)
						}
					}

					position = Some(i);
					break
				}
			}
		}

		let node_data = position.map(|i| {
			let node = self.roots.swap_remove(i);
			self.roots = node.children;
			self.best_finalized_number = Some(node.number);
			node.data
		});

		// if the block being finalized is earlier than a given root, then it
		// must be its ancestor, otherwise we can prune the root. if there's a
		// root at the same height then the hashes must match. otherwise the
		// node being finalized is higher than the root so it must be its
		// descendent (in this case the node wasn't finalized earlier presumably
		// because the predicate didn't pass).
		let mut changed = false;
		let roots = std::mem::take(&mut self.roots);

		for root in roots {
			let retain = root.number > number && is_descendent_of(hash, &root.hash)? ||
				root.number == number && root.hash == *hash ||
				is_descendent_of(&root.hash, hash)?;

			if retain {
				self.roots.push(root);
			} else {
				changed = true;
			}
		}

		self.best_finalized_number = Some(number);

		match (node_data, changed) {
			(Some(data), _) => Ok(FinalizationResult::Changed(Some(data))),
			(None, true) => Ok(FinalizationResult::Changed(None)),
			(None, false) => Ok(FinalizationResult::Unchanged),
		}
	}
}

// Workaround for: https://github.com/rust-lang/rust/issues/34537
mod node_implementation {
	use super::*;

	/// The outcome of a search within a node.
	pub enum FindOutcome<T> {
		// this is the node we were looking for.
		Found(T),
		// not the node we're looking for. contains a flag indicating
		// whether the node was a descendent. true implies the predicate failed.
		Failure(bool),
		// Abort search.
		Abort,
	}

	#[derive(Clone, Debug, Decode, Encode, PartialEq)]
	pub struct Node<H, N, V> {
		pub hash: H,
		pub number: N,
		pub data: V,
		pub children: Vec<Node<H, N, V>>,
	}

	impl<H: PartialEq, N: Ord, V> Node<H, N, V> {
		/// Rebalance the tree, i.e. sort child nodes by max branch depth (decreasing).
		pub fn rebalance(&mut self) {
			self.children.sort_by_key(|n| Reverse(n.max_depth()));
			for child in &mut self.children {
				child.rebalance();
			}
		}

		/// Finds the max depth among all branches descendent from this node.
		pub fn max_depth(&self) -> usize {
			let mut max = 0;

			for node in &self.children {
				max = node.max_depth().max(max)
			}

			max + 1
		}

		/// Map node data into values of new types.
		pub fn map<VT, F>(self, f: &mut F) -> Node<H, N, VT>
		where
			F: FnMut(&H, &N, V) -> VT,
		{
			let children = self.children.into_iter().map(|node| node.map(f)).collect();

			let vt = f(&self.hash, &self.number, self.data);
			Node { hash: self.hash, number: self.number, data: vt, children }
		}

		pub fn import<F, E: std::error::Error>(
			&mut self,
			mut hash: H,
			mut number: N,
			mut data: V,
			is_descendent_of: &F,
		) -> Result<Option<(H, N, V)>, Error<E>>
		where
			E: fmt::Debug,
			F: Fn(&H, &H) -> Result<bool, E>,
		{
			if self.hash == hash {
				return Err(Error::Duplicate)
			};

			if number <= self.number {
				return Ok(Some((hash, number, data)))
			}

			for node in self.children.iter_mut() {
				match node.import(hash, number, data, is_descendent_of)? {
					Some((h, n, d)) => {
						hash = h;
						number = n;
						data = d;
					},
					None => return Ok(None),
				}
			}

			if is_descendent_of(&self.hash, &hash)? {
				self.children.push(Node { data, hash, number, children: Vec::new() });

				Ok(None)
			} else {
				Ok(Some((hash, number, data)))
			}
		}

		/// Find a node in the tree that is the deepest ancestor of the given
		/// block hash which also passes the given predicate, backtracking
		/// when the predicate fails.
		/// The given function `is_descendent_of` should return `true` if the second hash (target)
		/// is a descendent of the first hash (base).
		///
		/// The returned indices are from last to first. The earliest index in the traverse path
		/// goes last, and the final index in the traverse path goes first. An empty list means
		/// that the current node is the result.
		pub fn find_node_index_where<F, P, E>(
			&self,
			hash: &H,
			number: &N,
			is_descendent_of: &F,
			predicate: &P,
		) -> Result<FindOutcome<Vec<usize>>, Error<E>>
		where
			E: std::error::Error,
			F: Fn(&H, &H) -> Result<bool, E>,
			P: Fn(&V) -> bool,
		{
			// stop searching this branch
			if *number < self.number {
				return Ok(FindOutcome::Failure(false))
			}

			let mut known_descendent_of = false;

			// continue depth-first search through all children
			for (i, node) in self.children.iter().enumerate() {
				// found node, early exit
				match node.find_node_index_where(hash, number, is_descendent_of, predicate)? {
					FindOutcome::Abort => return Ok(FindOutcome::Abort),
					FindOutcome::Found(mut x) => {
						x.push(i);
						return Ok(FindOutcome::Found(x))
					},
					FindOutcome::Failure(true) => {
						// if the block was a descendent of this child,
						// then it cannot be a descendent of any others,
						// so we don't search them.
						known_descendent_of = true;
						break
					},
					FindOutcome::Failure(false) => {},
				}
			}

			// node not found in any of the descendents, if the node we're
			// searching for is a descendent of this node then we will stop the
			// search here, since there aren't any more children and we found
			// the correct node so we don't want to backtrack.
			let is_descendent_of = known_descendent_of || is_descendent_of(&self.hash, hash)?;
			if is_descendent_of {
				// if the predicate passes we return the node
				if predicate(&self.data) {
					return Ok(FindOutcome::Found(Vec::new()))
				}
			}

			// otherwise, tell our ancestor that we failed, and whether
			// the block was a descendent.
			Ok(FindOutcome::Failure(is_descendent_of))
		}

		/// Find a node in the tree that is the deepest ancestor of the given
		/// block hash which also passes the given predicate, backtracking
		/// when the predicate fails.
		/// The given function `is_descendent_of` should return `true` if the second hash (target)
		/// is a descendent of the first hash (base).
		pub fn find_node_where<F, P, E>(
			&self,
			hash: &H,
			number: &N,
			is_descendent_of: &F,
			predicate: &P,
		) -> Result<FindOutcome<&Node<H, N, V>>, Error<E>>
		where
			E: std::error::Error,
			F: Fn(&H, &H) -> Result<bool, E>,
			P: Fn(&V) -> bool,
		{
			let outcome = self.find_node_index_where(hash, number, is_descendent_of, predicate)?;

			match outcome {
				FindOutcome::Abort => Ok(FindOutcome::Abort),
				FindOutcome::Failure(f) => Ok(FindOutcome::Failure(f)),
				FindOutcome::Found(mut indexes) => {
					let mut cur = self;

					while let Some(i) = indexes.pop() {
						cur = &cur.children[i];
					}
					Ok(FindOutcome::Found(cur))
				},
			}
		}

		/// Find a node in the tree that is the deepest ancestor of the given
		/// block hash which also passes the given predicate, backtracking
		/// when the predicate fails.
		/// The given function `is_descendent_of` should return `true` if the second hash (target)
		/// is a descendent of the first hash (base).
		pub fn find_node_where_mut<F, P, E>(
			&mut self,
			hash: &H,
			number: &N,
			is_descendent_of: &F,
			predicate: &P,
		) -> Result<FindOutcome<&mut Node<H, N, V>>, Error<E>>
		where
			E: std::error::Error,
			F: Fn(&H, &H) -> Result<bool, E>,
			P: Fn(&V) -> bool,
		{
			let outcome = self.find_node_index_where(hash, number, is_descendent_of, predicate)?;

			match outcome {
				FindOutcome::Abort => Ok(FindOutcome::Abort),
				FindOutcome::Failure(f) => Ok(FindOutcome::Failure(f)),
				FindOutcome::Found(mut indexes) => {
					let mut cur = self;

					while let Some(i) = indexes.pop() {
						cur = &mut cur.children[i];
					}
					Ok(FindOutcome::Found(cur))
				},
			}
		}
	}
}

// Workaround for: https://github.com/rust-lang/rust/issues/34537
use node_implementation::{FindOutcome, Node};

struct ForkTreeIterator<'a, H, N, V> {
	stack: Vec<&'a Node<H, N, V>>,
}

impl<'a, H, N, V> Iterator for ForkTreeIterator<'a, H, N, V> {
	type Item = &'a Node<H, N, V>;

	fn next(&mut self) -> Option<Self::Item> {
		self.stack.pop().map(|node| {
			// child nodes are stored ordered by max branch height (decreasing),
			// we want to keep this ordering while iterating but since we're
			// using a stack for iterator state we need to reverse it.
			self.stack.extend(node.children.iter().rev());
			node
		})
	}
}

struct RemovedIterator<H, N, V> {
	stack: Vec<Node<H, N, V>>,
}

impl<H, N, V> Iterator for RemovedIterator<H, N, V> {
	type Item = (H, N, V);

	fn next(&mut self) -> Option<Self::Item> {
		self.stack.pop().map(|mut node| {
			// child nodes are stored ordered by max branch height (decreasing),
			// we want to keep this ordering while iterating but since we're
			// using a stack for iterator state we need to reverse it.
			let children = std::mem::take(&mut node.children);

			self.stack.extend(children.into_iter().rev());
			(node.hash, node.number, node.data)
		})
	}
}

#[cfg(test)]
mod test {
	use super::{Error, FinalizationResult, ForkTree};

	#[derive(Debug, PartialEq)]
	struct TestError;

	impl std::fmt::Display for TestError {
		fn fmt(&self, f: &mut std::fmt::Formatter) -> std::fmt::Result {
			write!(f, "TestError")
		}
	}

	impl std::error::Error for TestError {}

	fn test_fork_tree<'a>(
	) -> (ForkTree<&'a str, u64, ()>, impl Fn(&&str, &&str) -> Result<bool, TestError>) {
		let mut tree = ForkTree::new();

		#[rustfmt::skip]
		//
		//     - B - C - D - E
		//    /
		//   /   - G
		//  /   /
		// A - F - H - I
		//          \
		//           - L - M \
		//               - O
		//  \
		//   — J - K
		//
		// (where N is not a part of fork tree)
		//
		// NOTE: the tree will get automatically rebalance on import and won't be laid out like the
		// diagram above. the children will be ordered by subtree depth and the longest branches
		// will be on the leftmost side of the tree.
		let is_descendent_of = |base: &&str, block: &&str| -> Result<bool, TestError> {
			let letters = vec!["B", "C", "D", "E", "F", "G", "H", "I", "J", "K", "L", "M", "O"];
			match (*base, *block) {
				("A", b) => Ok(letters.into_iter().any(|n| n == b)),
				("B", b) => Ok(b == "C" || b == "D" || b == "E"),
				("C", b) => Ok(b == "D" || b == "E"),
				("D", b) => Ok(b == "E"),
				("E", _) => Ok(false),
				("F", b) =>
					Ok(b == "G" || b == "H" || b == "I" || b == "L" || b == "M" || b == "O"),
				("G", _) => Ok(false),
				("H", b) => Ok(b == "I" || b == "L" || b == "M" || b == "O"),
				("I", _) => Ok(false),
				("J", b) => Ok(b == "K"),
				("K", _) => Ok(false),
				("L", b) => Ok(b == "M" || b == "O"),
				("M", _) => Ok(false),
				("O", _) => Ok(false),
				("0", _) => Ok(true),
				_ => Ok(false),
			}
		};

		tree.import("A", 1, (), &is_descendent_of).unwrap();

		tree.import("B", 2, (), &is_descendent_of).unwrap();
		tree.import("C", 3, (), &is_descendent_of).unwrap();
		tree.import("D", 4, (), &is_descendent_of).unwrap();
		tree.import("E", 5, (), &is_descendent_of).unwrap();

		tree.import("F", 2, (), &is_descendent_of).unwrap();
		tree.import("G", 3, (), &is_descendent_of).unwrap();

		tree.import("H", 3, (), &is_descendent_of).unwrap();
		tree.import("I", 4, (), &is_descendent_of).unwrap();
		tree.import("L", 4, (), &is_descendent_of).unwrap();
		tree.import("M", 5, (), &is_descendent_of).unwrap();
		tree.import("O", 5, (), &is_descendent_of).unwrap();

		tree.import("J", 2, (), &is_descendent_of).unwrap();
		tree.import("K", 3, (), &is_descendent_of).unwrap();

		(tree, is_descendent_of)
	}

	#[test]
	fn import_doesnt_revert() {
		let (mut tree, is_descendent_of) = test_fork_tree();

		tree.finalize_root(&"A");

		assert_eq!(tree.best_finalized_number, Some(1));

		assert_eq!(tree.import("A", 1, (), &is_descendent_of), Err(Error::Revert));
	}

	#[test]
	fn import_doesnt_add_duplicates() {
		let (mut tree, is_descendent_of) = test_fork_tree();

		assert_eq!(tree.import("A", 1, (), &is_descendent_of), Err(Error::Duplicate));

		assert_eq!(tree.import("I", 4, (), &is_descendent_of), Err(Error::Duplicate));

		assert_eq!(tree.import("G", 3, (), &is_descendent_of), Err(Error::Duplicate));

		assert_eq!(tree.import("K", 3, (), &is_descendent_of), Err(Error::Duplicate));
	}

	#[test]
	fn finalize_root_works() {
		let finalize_a = || {
			let (mut tree, ..) = test_fork_tree();

			assert_eq!(
				tree.roots().map(|(h, n, _)| (h.clone(), n.clone())).collect::<Vec<_>>(),
				vec![("A", 1)],
			);

			// finalizing "A" opens up three possible forks
			tree.finalize_root(&"A");

			assert_eq!(
				tree.roots().map(|(h, n, _)| (h.clone(), n.clone())).collect::<Vec<_>>(),
				vec![("B", 2), ("F", 2), ("J", 2)],
			);

			tree
		};

		{
			let mut tree = finalize_a();

			// finalizing "B" will progress on its fork and remove any other competing forks
			tree.finalize_root(&"B");

			assert_eq!(
				tree.roots().map(|(h, n, _)| (h.clone(), n.clone())).collect::<Vec<_>>(),
				vec![("C", 3)],
			);

			// all the other forks have been pruned
			assert!(tree.roots.len() == 1);
		}

		{
			let mut tree = finalize_a();

			// finalizing "J" will progress on its fork and remove any other competing forks
			tree.finalize_root(&"J");

			assert_eq!(
				tree.roots().map(|(h, n, _)| (h.clone(), n.clone())).collect::<Vec<_>>(),
				vec![("K", 3)],
			);

			// all the other forks have been pruned
			assert!(tree.roots.len() == 1);
		}
	}

	#[test]
	fn finalize_works() {
		let (mut tree, is_descendent_of) = test_fork_tree();

		let original_roots = tree.roots.clone();

		// finalizing a block prior to any in the node doesn't change the tree
		assert_eq!(tree.finalize(&"0", 0, &is_descendent_of), Ok(FinalizationResult::Unchanged));

		assert_eq!(tree.roots, original_roots);

		// finalizing "A" opens up three possible forks
		assert_eq!(
			tree.finalize(&"A", 1, &is_descendent_of),
			Ok(FinalizationResult::Changed(Some(()))),
		);

		assert_eq!(
			tree.roots().map(|(h, n, _)| (h.clone(), n.clone())).collect::<Vec<_>>(),
			vec![("B", 2), ("F", 2), ("J", 2)],
		);

		// finalizing anything lower than what we observed will fail
		assert_eq!(tree.best_finalized_number, Some(1));

		assert_eq!(tree.finalize(&"Z", 1, &is_descendent_of), Err(Error::Revert));

		// trying to finalize a node without finalizing its ancestors first will fail
		assert_eq!(tree.finalize(&"H", 3, &is_descendent_of), Err(Error::UnfinalizedAncestor));

		// after finalizing "F" we can finalize "H"
		assert_eq!(
			tree.finalize(&"F", 2, &is_descendent_of),
			Ok(FinalizationResult::Changed(Some(()))),
		);

		assert_eq!(
			tree.finalize(&"H", 3, &is_descendent_of),
			Ok(FinalizationResult::Changed(Some(()))),
		);

		assert_eq!(
			tree.roots().map(|(h, n, _)| (h.clone(), n.clone())).collect::<Vec<_>>(),
			vec![("L", 4), ("I", 4)],
		);

		// finalizing a node from another fork that isn't part of the tree clears the tree
		assert_eq!(
			tree.finalize(&"Z", 5, &is_descendent_of),
			Ok(FinalizationResult::Changed(None)),
		);

		assert!(tree.roots.is_empty());
	}

	#[test]
	fn finalize_with_ancestor_works() {
		let (mut tree, is_descendent_of) = test_fork_tree();

		let original_roots = tree.roots.clone();

		// finalizing a block prior to any in the node doesn't change the tree
		assert_eq!(
			tree.finalize_with_ancestors(&"0", 0, &is_descendent_of),
			Ok(FinalizationResult::Unchanged),
		);

		assert_eq!(tree.roots, original_roots);

		// finalizing "A" opens up three possible forks
		assert_eq!(
			tree.finalize_with_ancestors(&"A", 1, &is_descendent_of),
			Ok(FinalizationResult::Changed(Some(()))),
		);

		assert_eq!(
			tree.roots().map(|(h, n, _)| (h.clone(), n.clone())).collect::<Vec<_>>(),
			vec![("B", 2), ("F", 2), ("J", 2)],
		);

		// finalizing H:
		// 1) removes roots that are not ancestors/descendants of H (B, J)
		// 2) opens root that is ancestor of H (F -> G+H)
		// 3) finalizes the just opened root H (H -> I + L)
		assert_eq!(
			tree.finalize_with_ancestors(&"H", 3, &is_descendent_of),
			Ok(FinalizationResult::Changed(Some(()))),
		);

		assert_eq!(
			tree.roots().map(|(h, n, _)| (h.clone(), n.clone())).collect::<Vec<_>>(),
			vec![("L", 4), ("I", 4)],
		);

		assert_eq!(tree.best_finalized_number, Some(3));

		// finalizing N (which is not a part of the tree):
		// 1) removes roots that are not ancestors/descendants of N (I)
		// 2) opens root that is ancestor of N (L -> M+O)
		// 3) removes roots that are not ancestors/descendants of N (O)
		// 4) opens root that is ancestor of N (M -> {})
		assert_eq!(
			tree.finalize_with_ancestors(&"N", 6, &is_descendent_of),
			Ok(FinalizationResult::Changed(None)),
		);

		assert_eq!(
			tree.roots().map(|(h, n, _)| (h.clone(), n.clone())).collect::<Vec<_>>(),
			vec![],
		);

		assert_eq!(tree.best_finalized_number, Some(6));
	}

	#[test]
	fn finalize_with_descendent_works() {
		#[derive(Debug, PartialEq)]
		struct Change {
			effective: u64,
		}

		let (mut tree, is_descendent_of) = {
			let mut tree = ForkTree::new();

			let is_descendent_of = |base: &&str, block: &&str| -> Result<bool, TestError> {
				// A0 #1 - (B #2) - (C #5) - D #10 - E #15 - (F #100)
				//                            \
				//                             - (G #100)
				//
				// A1 #1
				//
				// Nodes B, C, F and G  are not part of the tree.
				match (*base, *block) {
					("A0", b) => Ok(b == "B" || b == "C" || b == "D" || b == "G"),
					("A1", _) => Ok(false),
					("C", b) => Ok(b == "D"),
					("D", b) => Ok(b == "E" || b == "F" || b == "G"),
					("E", b) => Ok(b == "F"),
					_ => Ok(false),
				}
			};

			tree.import("A0", 1, Change { effective: 5 }, &is_descendent_of).unwrap();
			tree.import("A1", 1, Change { effective: 5 }, &is_descendent_of).unwrap();
			tree.import("D", 10, Change { effective: 10 }, &is_descendent_of).unwrap();
			tree.import("E", 15, Change { effective: 50 }, &is_descendent_of).unwrap();

			(tree, is_descendent_of)
		};

		assert_eq!(
			tree.finalizes_any_with_descendent_if(
				&"B",
				2,
				&is_descendent_of,
				|c| c.effective <= 2,
			),
			Ok(None),
		);

		// finalizing "D" will finalize a block from the tree, but it can't be applied yet
		// since it is not a root change
		assert_eq!(
			tree.finalizes_any_with_descendent_if(&"D", 10, &is_descendent_of, |c| c.effective ==
				10,),
			Ok(Some(false)),
		);

		// finalizing "B" doesn't finalize "A0" since the predicate doesn't pass,
		// although it will clear out "A1" from the tree
		assert_eq!(
			tree.finalize_with_descendent_if(&"B", 2, &is_descendent_of, |c| c.effective <= 2,),
			Ok(FinalizationResult::Changed(None)),
		);

		assert_eq!(
			tree.roots().map(|(h, n, _)| (h.clone(), n.clone())).collect::<Vec<_>>(),
			vec![("A0", 1)],
		);

		// finalizing "C" will finalize the node "A0" and prune it out of the tree
		assert_eq!(
			tree.finalizes_any_with_descendent_if(
				&"C",
				5,
				&is_descendent_of,
				|c| c.effective <= 5,
			),
			Ok(Some(true)),
		);

		assert_eq!(
			tree.finalize_with_descendent_if(&"C", 5, &is_descendent_of, |c| c.effective <= 5,),
			Ok(FinalizationResult::Changed(Some(Change { effective: 5 }))),
		);

		assert_eq!(
			tree.roots().map(|(h, n, _)| (h.clone(), n.clone())).collect::<Vec<_>>(),
			vec![("D", 10)],
		);

		// finalizing "F" will fail since it would finalize past "E" without finalizing "D" first
		assert_eq!(
			tree.finalizes_any_with_descendent_if(&"F", 100, &is_descendent_of, |c| c.effective <=
				100,),
			Err(Error::UnfinalizedAncestor),
		);

		// it will work with "G" though since it is not in the same branch as "E"
		assert_eq!(
			tree.finalizes_any_with_descendent_if(&"G", 100, &is_descendent_of, |c| c.effective <=
				100,),
			Ok(Some(true)),
		);

		assert_eq!(
			tree.finalize_with_descendent_if(&"G", 100, &is_descendent_of, |c| c.effective <= 100,),
			Ok(FinalizationResult::Changed(Some(Change { effective: 10 }))),
		);

		// "E" will be pruned out
		assert_eq!(tree.roots().count(), 0);
	}

	#[test]
	fn iter_iterates_in_preorder() {
		let (tree, ..) = test_fork_tree();
		assert_eq!(
			tree.iter().map(|(h, n, _)| (h.clone(), n.clone())).collect::<Vec<_>>(),
			vec![
				("A", 1),
				("B", 2),
				("C", 3),
				("D", 4),
				("E", 5),
				("F", 2),
				("H", 3),
				("L", 4),
				("M", 5),
				("O", 5),
				("I", 4),
				("G", 3),
				("J", 2),
				("K", 3),
			],
		);
	}

	#[test]
	fn minimizes_calls_to_is_descendent_of() {
		use std::sync::atomic::{AtomicUsize, Ordering};

		let n_is_descendent_of_calls = AtomicUsize::new(0);

		let is_descendent_of = |_: &&str, _: &&str| -> Result<bool, TestError> {
			n_is_descendent_of_calls.fetch_add(1, Ordering::SeqCst);
			Ok(true)
		};

		{
			// Deep tree where we want to call `finalizes_any_with_descendent_if`. The
			// search for the node should first check the predicate (which is cheaper) and
			// only then call `is_descendent_of`
			let mut tree = ForkTree::new();
			let letters = vec!["A", "B", "C", "D", "E", "F", "G", "H", "I", "J", "K"];

			for (i, letter) in letters.iter().enumerate() {
				tree.import::<_, TestError>(*letter, i, i, &|_, _| Ok(true)).unwrap();
			}

			// "L" is a descendent of "K", but the predicate will only pass for "K",
			// therefore only one call to `is_descendent_of` should be made
			assert_eq!(
				tree.finalizes_any_with_descendent_if(&"L", 11, &is_descendent_of, |i| *i == 10,),
				Ok(Some(false)),
			);

			assert_eq!(n_is_descendent_of_calls.load(Ordering::SeqCst), 1);
		}

		n_is_descendent_of_calls.store(0, Ordering::SeqCst);

		{
			// Multiple roots in the tree where we want to call `finalize_with_descendent_if`.
			// The search for the root node should first check the predicate (which is cheaper)
			// and only then call `is_descendent_of`
			let mut tree = ForkTree::new();
			let letters = vec!["A", "B", "C", "D", "E", "F", "G", "H", "I", "J", "K"];

			for (i, letter) in letters.iter().enumerate() {
				tree.import::<_, TestError>(*letter, i, i, &|_, _| Ok(false)).unwrap();
			}

			// "L" is a descendent of "K", but the predicate will only pass for "K",
			// therefore only one call to `is_descendent_of` should be made
			assert_eq!(
				tree.finalize_with_descendent_if(&"L", 11, &is_descendent_of, |i| *i == 10,),
				Ok(FinalizationResult::Changed(Some(10))),
			);

			assert_eq!(n_is_descendent_of_calls.load(Ordering::SeqCst), 1);
		}
	}

	#[test]
	fn find_node_works() {
		let (tree, is_descendent_of) = test_fork_tree();

		let node = tree.find_node_where(&"D", &4, &is_descendent_of, &|_| true).unwrap().unwrap();

		assert_eq!(node.hash, "C");
		assert_eq!(node.number, 3);
	}

	#[test]
	fn map_works() {
		let (tree, _is_descendent_of) = test_fork_tree();

		let _tree = tree.map(&mut |_, _, _| ());
	}

	#[test]
	fn prune_works() {
		let (mut tree, is_descendent_of) = test_fork_tree();

		let removed = tree.prune(&"C", &3, &is_descendent_of, &|_| true).unwrap();

		assert_eq!(tree.roots.iter().map(|node| node.hash).collect::<Vec<_>>(), vec!["B"]);

		assert_eq!(
			tree.iter().map(|(hash, _, _)| *hash).collect::<Vec<_>>(),
			vec!["B", "C", "D", "E"],
		);

		assert_eq!(
			removed.map(|(hash, _, _)| hash).collect::<Vec<_>>(),
			vec!["A", "F", "H", "L", "M", "O", "I", "G", "J", "K"]
		);

		let removed = tree.prune(&"E", &5, &is_descendent_of, &|_| true).unwrap();

		assert_eq!(tree.roots.iter().map(|node| node.hash).collect::<Vec<_>>(), vec!["D"]);

		assert_eq!(tree.iter().map(|(hash, _, _)| *hash).collect::<Vec<_>>(), vec!["D", "E"]);

		assert_eq!(removed.map(|(hash, _, _)| hash).collect::<Vec<_>>(), vec!["B", "C"]);
	}

	#[test]
	fn find_node_backtracks_after_finding_highest_descending_node() {
		let mut tree = ForkTree::new();

		// A - B
		//  \
		//   — C
		//
		let is_descendent_of = |base: &&str, block: &&str| -> Result<bool, TestError> {
			match (*base, *block) {
				("A", b) => Ok(b == "B" || b == "C" || b == "D"),
				("B", b) | ("C", b) => Ok(b == "D"),
				("0", _) => Ok(true),
				_ => Ok(false),
			}
		};

		tree.import("A", 1, 1, &is_descendent_of).unwrap();
		tree.import("B", 2, 2, &is_descendent_of).unwrap();
		tree.import("C", 2, 4, &is_descendent_of).unwrap();

		// when searching the tree we reach node `C`, but the
		// predicate doesn't pass. we should backtrack to `B`, but not to `A`,
		// since "B" fulfills the predicate.
		let node = tree.find_node_where(&"D", &3, &is_descendent_of, &|data| *data < 3).unwrap();

		assert_eq!(node.unwrap().hash, "B");
	}

	#[test]
	fn tree_rebalance() {
		let (mut tree, _) = test_fork_tree();

		// the tree is automatically rebalanced on import, therefore we should iterate in preorder
		// exploring the longest forks first. check the ascii art above to understand the expected
		// output below.
		assert_eq!(
			tree.iter().map(|(h, _, _)| *h).collect::<Vec<_>>(),
			vec!["A", "B", "C", "D", "E", "F", "H", "L", "M", "O", "I", "G", "J", "K"],
		);

		// let's add a block "P" which is a descendent of block "O"
		let is_descendent_of = |base: &&str, block: &&str| -> Result<bool, TestError> {
			match (*base, *block) {
				(b, "P") => Ok(vec!["A", "F", "L", "O"].into_iter().any(|n| n == b)),
				_ => Ok(false),
			}
		};

		tree.import("P", 6, (), &is_descendent_of).unwrap();

		// this should re-order the tree, since the branch "A -> B -> C -> D -> E" is no longer tied
		// with 5 blocks depth. additionally "O" should be visited before "M" now, since it has one
		// descendent "P" which makes that branch 6 blocks long.
		assert_eq!(
			tree.iter().map(|(h, _, _)| *h).collect::<Vec<_>>(),
			["A", "F", "H", "L", "O", "P", "M", "I", "G", "B", "C", "D", "E", "J", "K"]
		);
	}
}