1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
// This file is part of Substrate.

// Copyright (C) 2019-2021 Parity Technologies (UK) Ltd.
// SPDX-License-Identifier: Apache-2.0

// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// 	http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

//! This module contains routines for accessing and altering a contract related state.

use crate::{
	exec::{AccountIdOf, StorageKey},
	weights::WeightInfo,
	BalanceOf, CodeHash, Config, ContractInfoOf, DeletionQueue, Error, TrieId,
};
use codec::{Codec, Decode, Encode};
use frame_support::{
	dispatch::{DispatchError, DispatchResult},
	storage::child::{self, ChildInfo, KillStorageResult},
	traits::Get,
	weights::Weight,
};
use sp_core::crypto::UncheckedFrom;
use sp_io::hashing::blake2_256;
use sp_runtime::{
	traits::{Bounded, Hash, MaybeSerializeDeserialize, Member, Saturating, Zero},
	RuntimeDebug,
};
use sp_std::{fmt::Debug, marker::PhantomData, prelude::*};

pub type AliveContractInfo<T> =
	RawAliveContractInfo<CodeHash<T>, BalanceOf<T>, <T as frame_system::Config>::BlockNumber>;
pub type TombstoneContractInfo<T> = RawTombstoneContractInfo<
	<T as frame_system::Config>::Hash,
	<T as frame_system::Config>::Hashing,
>;

/// Information for managing an account and its sub trie abstraction.
/// This is the required info to cache for an account
#[derive(Encode, Decode, RuntimeDebug)]
pub enum ContractInfo<T: Config> {
	Alive(AliveContractInfo<T>),
	Tombstone(TombstoneContractInfo<T>),
}

impl<T: Config> ContractInfo<T> {
	/// If contract is alive then return some alive info
	pub fn get_alive(self) -> Option<AliveContractInfo<T>> {
		if let ContractInfo::Alive(alive) = self {
			Some(alive)
		} else {
			None
		}
	}

	/// If contract is alive then return some reference to alive info
	#[cfg(test)]
	pub fn as_alive(&self) -> Option<&AliveContractInfo<T>> {
		if let ContractInfo::Alive(ref alive) = self {
			Some(alive)
		} else {
			None
		}
	}

	/// If contract is tombstone then return some tombstone info
	pub fn get_tombstone(self) -> Option<TombstoneContractInfo<T>> {
		if let ContractInfo::Tombstone(tombstone) = self {
			Some(tombstone)
		} else {
			None
		}
	}
}

/// Information for managing an account and its sub trie abstraction.
/// This is the required info to cache for an account.
#[derive(Encode, Decode, Clone, PartialEq, Eq, RuntimeDebug)]
pub struct RawAliveContractInfo<CodeHash, Balance, BlockNumber> {
	/// Unique ID for the subtree encoded as a bytes vector.
	pub trie_id: TrieId,
	/// The total number of bytes used by this contract.
	///
	/// It is a sum of each key-value pair stored by this contract.
	pub storage_size: u32,
	/// The total number of key-value pairs in storage of this contract.
	pub pair_count: u32,
	/// The code associated with a given account.
	pub code_hash: CodeHash,
	/// Pay rent at most up to this value.
	pub rent_allowance: Balance,
	/// The amount of rent that was paid by the contract over its whole lifetime.
	///
	/// A restored contract starts with a value of zero just like a new contract.
	pub rent_paid: Balance,
	/// Last block rent has been paid.
	pub deduct_block: BlockNumber,
	/// Last block child storage has been written.
	pub last_write: Option<BlockNumber>,
	/// This field is reserved for future evolution of format.
	pub _reserved: Option<()>,
}

impl<CodeHash, Balance, BlockNumber> RawAliveContractInfo<CodeHash, Balance, BlockNumber> {
	/// Associated child trie unique id is built from the hash part of the trie id.
	pub fn child_trie_info(&self) -> ChildInfo {
		child_trie_info(&self.trie_id[..])
	}
}

/// Associated child trie unique id is built from the hash part of the trie id.
fn child_trie_info(trie_id: &[u8]) -> ChildInfo {
	ChildInfo::new_default(trie_id)
}

#[derive(Encode, Decode, PartialEq, Eq, RuntimeDebug)]
pub struct RawTombstoneContractInfo<H, Hasher>(H, PhantomData<Hasher>);

impl<H, Hasher> RawTombstoneContractInfo<H, Hasher>
where
	H: Member
		+ MaybeSerializeDeserialize
		+ Debug
		+ AsRef<[u8]>
		+ AsMut<[u8]>
		+ Copy
		+ Default
		+ sp_std::hash::Hash
		+ Codec,
	Hasher: Hash<Output = H>,
{
	pub fn new(storage_root: &[u8], code_hash: H) -> Self {
		let mut buf = Vec::new();
		storage_root.using_encoded(|encoded| buf.extend_from_slice(encoded));
		buf.extend_from_slice(code_hash.as_ref());
		RawTombstoneContractInfo(<Hasher as Hash>::hash(&buf[..]), PhantomData)
	}
}

impl<T: Config> From<AliveContractInfo<T>> for ContractInfo<T> {
	fn from(alive_info: AliveContractInfo<T>) -> Self {
		Self::Alive(alive_info)
	}
}

#[derive(Encode, Decode)]
pub struct DeletedContract {
	pair_count: u32,
	trie_id: TrieId,
}

pub struct Storage<T>(PhantomData<T>);

impl<T> Storage<T>
where
	T: Config,
	T::AccountId: UncheckedFrom<T::Hash> + AsRef<[u8]>,
{
	/// Reads a storage kv pair of a contract.
	///
	/// The read is performed from the `trie_id` only. The `address` is not necessary. If the
	/// contract doesn't store under the given `key` `None` is returned.
	pub fn read(trie_id: &TrieId, key: &StorageKey) -> Option<Vec<u8>> {
		child::get_raw(&child_trie_info(&trie_id), &blake2_256(key))
	}

	/// Update a storage entry into a contract's kv storage.
	///
	/// If the `opt_new_value` is `None` then the kv pair is removed.
	///
	/// This function also updates the bookkeeping info such as: number of total non-empty pairs a
	/// contract owns, the last block the storage was written to, etc. That's why, in contrast to
	/// `read`, this function also requires the `account` ID.
	pub fn write(
		block_number: T::BlockNumber,
		new_info: &mut AliveContractInfo<T>,
		key: &StorageKey,
		opt_new_value: Option<Vec<u8>>,
	) -> DispatchResult {
		let hashed_key = blake2_256(key);
		let child_trie_info = &child_trie_info(&new_info.trie_id);

		let opt_prev_len = child::len(&child_trie_info, &hashed_key);

		// Update the total number of KV pairs and the number of empty pairs.
		match (&opt_prev_len, &opt_new_value) {
			(Some(_), None) => {
				new_info.pair_count = new_info
					.pair_count
					.checked_sub(1)
					.ok_or_else(|| Error::<T>::StorageExhausted)?;
			},
			(None, Some(_)) => {
				new_info.pair_count = new_info
					.pair_count
					.checked_add(1)
					.ok_or_else(|| Error::<T>::StorageExhausted)?;
			},
			(Some(_), Some(_)) => {},
			(None, None) => {},
		}

		// Update the total storage size.
		let prev_value_len = opt_prev_len.unwrap_or(0);
		let new_value_len =
			opt_new_value.as_ref().map(|new_value| new_value.len() as u32).unwrap_or(0);
		new_info.storage_size = new_info
			.storage_size
			.checked_sub(prev_value_len)
			.and_then(|val| val.checked_add(new_value_len))
			.ok_or_else(|| Error::<T>::StorageExhausted)?;

		new_info.last_write = Some(block_number);

		// Finally, perform the change on the storage.
		match opt_new_value {
			Some(new_value) => child::put_raw(&child_trie_info, &hashed_key, &new_value[..]),
			None => child::kill(&child_trie_info, &hashed_key),
		}

		Ok(())
	}

	/// Creates a new contract descriptor in the storage with the given code hash at the given
	/// address.
	///
	/// Returns `Err` if there is already a contract (or a tombstone) exists at the given address.
	pub fn new_contract(
		account: &AccountIdOf<T>,
		trie_id: TrieId,
		ch: CodeHash<T>,
	) -> Result<AliveContractInfo<T>, DispatchError> {
		if <ContractInfoOf<T>>::contains_key(account) {
			return Err(Error::<T>::DuplicateContract.into())
		}

		let contract = AliveContractInfo::<T> {
			code_hash: ch,
			storage_size: 0,
			trie_id,
			deduct_block:
				// We want to charge rent for the first block in advance. Therefore we
				// treat the contract as if it was created in the last block and then
				// charge rent for it during instantiation.
				<frame_system::Pallet<T>>::block_number().saturating_sub(1u32.into()),
			rent_allowance: <BalanceOf<T>>::max_value(),
			rent_paid: <BalanceOf<T>>::zero(),
			pair_count: 0,
			last_write: None,
			_reserved: None,
		};

		Ok(contract)
	}

	/// Push a contract's trie to the deletion queue for lazy removal.
	///
	/// You must make sure that the contract is also removed or converted into a tombstone
	/// when queuing the trie for deletion.
	pub fn queue_trie_for_deletion(contract: &AliveContractInfo<T>) -> DispatchResult {
		if <DeletionQueue<T>>::decode_len().unwrap_or(0) >= T::DeletionQueueDepth::get() as usize {
			Err(Error::<T>::DeletionQueueFull.into())
		} else {
			<DeletionQueue<T>>::append(DeletedContract {
				pair_count: contract.pair_count,
				trie_id: contract.trie_id.clone(),
			});
			Ok(())
		}
	}

	/// Calculates the weight that is necessary to remove one key from the trie and how many
	/// of those keys can be deleted from the deletion queue given the supplied queue length
	/// and weight limit.
	pub fn deletion_budget(queue_len: usize, weight_limit: Weight) -> (u64, u32) {
		let base_weight = T::WeightInfo::on_initialize();
		let weight_per_queue_item = T::WeightInfo::on_initialize_per_queue_item(1) -
			T::WeightInfo::on_initialize_per_queue_item(0);
		let weight_per_key = T::WeightInfo::on_initialize_per_trie_key(1) -
			T::WeightInfo::on_initialize_per_trie_key(0);
		let decoding_weight = weight_per_queue_item.saturating_mul(queue_len as Weight);

		// `weight_per_key` being zero makes no sense and would constitute a failure to
		// benchmark properly. We opt for not removing any keys at all in this case.
		let key_budget = weight_limit
			.saturating_sub(base_weight)
			.saturating_sub(decoding_weight)
			.checked_div(weight_per_key)
			.unwrap_or(0) as u32;

		(weight_per_key, key_budget)
	}

	/// Delete as many items from the deletion queue possible within the supplied weight limit.
	///
	/// It returns the amount of weight used for that task or `None` when no weight was used
	/// apart from the base weight.
	pub fn process_deletion_queue_batch(weight_limit: Weight) -> Weight {
		let queue_len = <DeletionQueue<T>>::decode_len().unwrap_or(0);
		if queue_len == 0 {
			return weight_limit
		}

		let (weight_per_key, mut remaining_key_budget) =
			Self::deletion_budget(queue_len, weight_limit);

		// We want to check whether we have enough weight to decode the queue before
		// proceeding. Too little weight for decoding might happen during runtime upgrades
		// which consume the whole block before the other `on_initialize` blocks are called.
		if remaining_key_budget == 0 {
			return weight_limit
		}

		let mut queue = <DeletionQueue<T>>::get();

		while !queue.is_empty() && remaining_key_budget > 0 {
			// Cannot panic due to loop condition
			let trie = &mut queue[0];
			let pair_count = trie.pair_count;
			let outcome =
				child::kill_storage(&child_trie_info(&trie.trie_id), Some(remaining_key_budget));
			if pair_count > remaining_key_budget {
				// Cannot underflow because of the if condition
				trie.pair_count -= remaining_key_budget;
			} else {
				// We do not care to preserve order. The contract is deleted already and
				// noone waits for the trie to be deleted.
				let removed = queue.swap_remove(0);
				match outcome {
					// This should not happen as our budget was large enough to remove all keys.
					KillStorageResult::SomeRemaining(_) => {
						log::error!(
							target: "runtime::contracts",
							"After deletion keys are remaining in this child trie: {:?}",
							removed.trie_id,
						);
					},
					KillStorageResult::AllRemoved(_) => (),
				}
			}
			remaining_key_budget =
				remaining_key_budget.saturating_sub(remaining_key_budget.min(pair_count));
		}

		<DeletionQueue<T>>::put(queue);
		weight_limit.saturating_sub(weight_per_key.saturating_mul(remaining_key_budget as Weight))
	}

	/// This generator uses inner counter for account id and applies the hash over `AccountId +
	/// accountid_counter`.
	pub fn generate_trie_id(account_id: &AccountIdOf<T>, seed: u64) -> TrieId {
		let buf: Vec<_> = account_id.as_ref().iter().chain(&seed.to_le_bytes()).cloned().collect();
		T::Hashing::hash(&buf).as_ref().into()
	}

	/// Returns the code hash of the contract specified by `account` ID.
	#[cfg(test)]
	pub fn code_hash(account: &AccountIdOf<T>) -> Option<CodeHash<T>> {
		<ContractInfoOf<T>>::get(account).and_then(|i| i.as_alive().map(|i| i.code_hash))
	}

	/// Fill up the queue in order to exercise the limits during testing.
	#[cfg(test)]
	pub fn fill_queue_with_dummies() {
		let queue: Vec<_> = (0..T::DeletionQueueDepth::get())
			.map(|_| DeletedContract { pair_count: 0, trie_id: vec![] })
			.collect();
		<DeletionQueue<T>>::put(queue);
	}
}