1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
// Copyright 2018-2020 Parity Technologies (UK) Ltd.
// This file is part of Substrate.

// Substrate is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.

// Substrate is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
// GNU General Public License for more details.

// You should have received a copy of the GNU General Public License
// along with Substrate. If not, see <http://www.gnu.org/licenses/>.

use crate::Trait;
use sp_std::marker::PhantomData;
use sp_runtime::traits::Zero;
use frame_support::dispatch::{
	DispatchResultWithPostInfo, PostDispatchInfo, DispatchErrorWithPostInfo,
};
use pallet_contracts_primitives::ExecError;

#[cfg(test)]
use std::{any::Any, fmt::Debug};

// Gas is essentially the same as weight. It is a 1 to 1 correspondence.
pub type Gas = frame_support::weights::Weight;

#[must_use]
#[derive(Debug, PartialEq, Eq)]
pub enum GasMeterResult {
	Proceed,
	OutOfGas,
}

impl GasMeterResult {
	pub fn is_out_of_gas(&self) -> bool {
		match *self {
			GasMeterResult::OutOfGas => true,
			GasMeterResult::Proceed => false,
		}
	}
}

#[cfg(not(test))]
pub trait TestAuxiliaries {}
#[cfg(not(test))]
impl<T> TestAuxiliaries for T {}

#[cfg(test)]
pub trait TestAuxiliaries: Any + Debug + PartialEq + Eq {}
#[cfg(test)]
impl<T: Any + Debug + PartialEq + Eq> TestAuxiliaries for T {}

/// This trait represents a token that can be used for charging `GasMeter`.
/// There is no other way of charging it.
///
/// Implementing type is expected to be super lightweight hence `Copy` (`Clone` is added
/// for consistency). If inlined there should be no observable difference compared
/// to a hand-written code.
pub trait Token<T: Trait>: Copy + Clone + TestAuxiliaries {
	/// Metadata type, which the token can require for calculating the amount
	/// of gas to charge. Can be a some configuration type or
	/// just the `()`.
	type Metadata;

	/// Calculate amount of gas that should be taken by this token.
	///
	/// This function should be really lightweight and must not fail. It is not
	/// expected that implementors will query the storage or do any kinds of heavy operations.
	///
	/// That said, implementors of this function still can run into overflows
	/// while calculating the amount. In this case it is ok to use saturating operations
	/// since on overflow they will return `max_value` which should consume all gas.
	fn calculate_amount(&self, metadata: &Self::Metadata) -> Gas;
}

/// A wrapper around a type-erased trait object of what used to be a `Token`.
#[cfg(test)]
pub struct ErasedToken {
	pub description: String,
	pub token: Box<dyn Any>,
}

pub struct GasMeter<T: Trait> {
	gas_limit: Gas,
	/// Amount of gas left from initial gas limit. Can reach zero.
	gas_left: Gas,
	_phantom: PhantomData<T>,
	#[cfg(test)]
	tokens: Vec<ErasedToken>,
}
impl<T: Trait> GasMeter<T> {
	pub fn new(gas_limit: Gas) -> Self {
		GasMeter {
			gas_limit,
			gas_left: gas_limit,
			_phantom: PhantomData,
			#[cfg(test)]
			tokens: Vec::new(),
		}
	}

	/// Account for used gas.
	///
	/// Amount is calculated by the given `token`.
	///
	/// Returns `OutOfGas` if there is not enough gas or addition of the specified
	/// amount of gas has lead to overflow. On success returns `Proceed`.
	///
	/// NOTE that amount is always consumed, i.e. if there is not enough gas
	/// then the counter will be set to zero.
	#[inline]
	pub fn charge<Tok: Token<T>>(
		&mut self,
		metadata: &Tok::Metadata,
		token: Tok,
	) -> GasMeterResult {
		#[cfg(test)]
		{
			// Unconditionally add the token to the storage.
			let erased_tok = ErasedToken {
				description: format!("{:?}", token),
				token: Box::new(token),
			};
			self.tokens.push(erased_tok);
		}

		let amount = token.calculate_amount(metadata);
		let new_value = match self.gas_left.checked_sub(amount) {
			None => None,
			Some(val) => Some(val),
		};

		// We always consume the gas even if there is not enough gas.
		self.gas_left = new_value.unwrap_or_else(Zero::zero);

		match new_value {
			Some(_) => GasMeterResult::Proceed,
			None => GasMeterResult::OutOfGas,
		}
	}

	// Account for not fully used gas.
	//
	// This can be used after dispatching a runtime call to refund gas that was not
	// used by the dispatchable.
	pub fn refund(&mut self, gas: Gas) {
		self.gas_left = self.gas_left.saturating_add(gas).max(self.gas_limit);
	}

	/// Allocate some amount of gas and perform some work with
	/// a newly created nested gas meter.
	///
	/// Invokes `f` with either the gas meter that has `amount` gas left or
	/// with `None`, if this gas meter has not enough gas to allocate given `amount`.
	///
	/// All unused gas in the nested gas meter is returned to this gas meter.
	pub fn with_nested<R, F: FnOnce(Option<&mut GasMeter<T>>) -> R>(
		&mut self,
		amount: Gas,
		f: F,
	) -> R {
		// NOTE that it is ok to allocate all available gas since it still ensured
		// by `charge` that it doesn't reach zero.
		if self.gas_left < amount {
			f(None)
		} else {
			self.gas_left = self.gas_left - amount;
			let mut nested = GasMeter::new(amount);

			let r = f(Some(&mut nested));

			self.gas_left = self.gas_left + nested.gas_left;

			r
		}
	}

	/// Returns how much gas was used.
	pub fn gas_spent(&self) -> Gas {
		self.gas_limit - self.gas_left
	}

	/// Returns how much gas left from the initial budget.
	pub fn gas_left(&self) -> Gas {
		self.gas_left
	}

	/// Turn this GasMeter into a DispatchResult that contains the actually used gas.
	pub fn into_dispatch_result<R, E>(self, result: Result<R, E>) -> DispatchResultWithPostInfo
	where
		E: Into<ExecError>,
	{
		let post_info = PostDispatchInfo {
			actual_weight: Some(self.gas_spent()),
			pays_fee: Default::default(),
		};

		result
			.map(|_| post_info)
			.map_err(|e| DispatchErrorWithPostInfo { post_info, error: e.into().error })
	}

	#[cfg(test)]
	pub fn tokens(&self) -> &[ErasedToken] {
		&self.tokens
	}
}

/// A simple utility macro that helps to match against a
/// list of tokens.
#[macro_export]
macro_rules! match_tokens {
	($tokens_iter:ident,) => {
	};
	($tokens_iter:ident, $x:expr, $($rest:tt)*) => {
		{
			let next = ($tokens_iter).next().unwrap();
			let pattern = $x;

			// Note that we don't specify the type name directly in this macro,
			// we only have some expression $x of some type. At the same time, we
			// have an iterator of Box<dyn Any> and to downcast we need to specify
			// the type which we want downcast to.
			//
			// So what we do is we assign `_pattern_typed_next_ref` to a variable which has
			// the required type.
			//
			// Then we make `_pattern_typed_next_ref = token.downcast_ref()`. This makes
			// rustc infer the type `T` (in `downcast_ref<T: Any>`) to be the same as in $x.

			let mut _pattern_typed_next_ref = &pattern;
			_pattern_typed_next_ref = match next.token.downcast_ref() {
				Some(p) => {
					assert_eq!(p, &pattern);
					p
				}
				None => {
					panic!("expected type {} got {}", stringify!($x), next.description);
				}
			};
		}

		match_tokens!($tokens_iter, $($rest)*);
	};
}

#[cfg(test)]
mod tests {
	use super::{GasMeter, Token};
	use crate::tests::Test;

	/// A trivial token that charges the specified number of gas units.
	#[derive(Copy, Clone, PartialEq, Eq, Debug)]
	struct SimpleToken(u64);
	impl Token<Test> for SimpleToken {
		type Metadata = ();
		fn calculate_amount(&self, _metadata: &()) -> u64 { self.0 }
	}

	struct MultiplierTokenMetadata {
		multiplier: u64,
	}
	/// A simple token that charges for the given amount multiplied to
	/// a multiplier taken from a given metadata.
	#[derive(Copy, Clone, PartialEq, Eq, Debug)]
	struct MultiplierToken(u64);

	impl Token<Test> for MultiplierToken {
		type Metadata = MultiplierTokenMetadata;
		fn calculate_amount(&self, metadata: &MultiplierTokenMetadata) -> u64 {
			// Probably you want to use saturating mul in production code.
			self.0 * metadata.multiplier
		}
	}

	#[test]
	fn it_works() {
		let gas_meter = GasMeter::<Test>::new(50000);
		assert_eq!(gas_meter.gas_left(), 50000);
	}

	#[test]
	fn simple() {
		let mut gas_meter = GasMeter::<Test>::new(50000);

		let result = gas_meter
			.charge(&MultiplierTokenMetadata { multiplier: 3 }, MultiplierToken(10));
		assert!(!result.is_out_of_gas());

		assert_eq!(gas_meter.gas_left(), 49_970);
	}

	#[test]
	fn tracing() {
		let mut gas_meter = GasMeter::<Test>::new(50000);
		assert!(!gas_meter.charge(&(), SimpleToken(1)).is_out_of_gas());
		assert!(!gas_meter
			.charge(&MultiplierTokenMetadata { multiplier: 3 }, MultiplierToken(10))
			.is_out_of_gas());

		let mut tokens = gas_meter.tokens()[0..2].iter();
		match_tokens!(tokens, SimpleToken(1), MultiplierToken(10),);
	}

	// This test makes sure that nothing can be executed if there is no gas.
	#[test]
	fn refuse_to_execute_anything_if_zero() {
		let mut gas_meter = GasMeter::<Test>::new(0);
		assert!(gas_meter.charge(&(), SimpleToken(1)).is_out_of_gas());
	}

	// Make sure that if the gas meter is charged by exceeding amount then not only an error
	// returned for that charge, but also for all consequent charges.
	//
	// This is not strictly necessary, because the execution should be interrupted immediately
	// if the gas meter runs out of gas. However, this is just a nice property to have.
	#[test]
	fn overcharge_is_unrecoverable() {
		let mut gas_meter = GasMeter::<Test>::new(200);

		// The first charge is should lead to OOG.
		assert!(gas_meter.charge(&(), SimpleToken(300)).is_out_of_gas());

		// The gas meter is emptied at this moment, so this should also fail.
		assert!(gas_meter.charge(&(), SimpleToken(1)).is_out_of_gas());
	}


	// Charging the exact amount that the user paid for should be
	// possible.
	#[test]
	fn charge_exact_amount() {
		let mut gas_meter = GasMeter::<Test>::new(25);
		assert!(!gas_meter.charge(&(), SimpleToken(25)).is_out_of_gas());
	}
}