1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
// This file is part of Substrate.

// Copyright (C) 2017-2021 Parity Technologies (UK) Ltd.
// SPDX-License-Identifier: Apache-2.0

// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// 	http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

//! Proc macro to generate the reward curve functions and tests.

mod log;

use log::log2;
use proc_macro::TokenStream;
use proc_macro2::{Span, TokenStream as TokenStream2};
use proc_macro_crate::{crate_name, FoundCrate};
use quote::{quote, ToTokens};
use std::convert::TryInto;
use syn::parse::{Parse, ParseStream};

/// Accepts a number of expressions to create a instance of PiecewiseLinear which represents the
/// NPoS curve (as detailed
/// [here](https://research.web3.foundation/en/latest/polkadot/Token%20Economics.html#inflation-model))
/// for those parameters. Parameters are:
/// - `min_inflation`: the minimal amount to be rewarded between validators, expressed as a fraction
///   of total issuance. Known as `I_0` in the literature. Expressed in millionth, must be between 0
///   and 1_000_000.
///
/// - `max_inflation`: the maximum amount to be rewarded between validators, expressed as a fraction
///   of total issuance. This is attained only when `ideal_stake` is achieved. Expressed in
///   millionth, must be between min_inflation and 1_000_000.
///
/// - `ideal_stake`: the fraction of total issued tokens that should be actively staked behind
///   validators. Known as `x_ideal` in the literature. Expressed in millionth, must be between
///   0_100_000 and 0_900_000.
///
/// - `falloff`: Known as `decay_rate` in the literature. A co-efficient dictating the strength of
///   the global incentivization to get the `ideal_stake`. A higher number results in less typical
///   inflation at the cost of greater volatility for validators. Expressed in millionth, must be
///   between 0 and 1_000_000.
///
/// - `max_piece_count`: The maximum number of pieces in the curve. A greater number uses more
///   resources but results in higher accuracy. Must be between 2 and 1_000.
///
/// - `test_precision`: The maximum error allowed in the generated test. Expressed in millionth,
///   must be between 0 and 1_000_000.
///
/// # Example
///
/// ```
/// # fn main() {}
/// use sp_runtime::curve::PiecewiseLinear;
///
/// pallet_staking_reward_curve::build! {
///     const I_NPOS: PiecewiseLinear<'static> = curve!(
///         min_inflation: 0_025_000,
///         max_inflation: 0_100_000,
///         ideal_stake: 0_500_000,
///         falloff: 0_050_000,
///         max_piece_count: 40,
///         test_precision: 0_005_000,
///     );
/// }
/// ```
#[proc_macro]
pub fn build(input: TokenStream) -> TokenStream {
	let input = syn::parse_macro_input!(input as INposInput);

	let points = compute_points(&input);

	let declaration = generate_piecewise_linear(points);
	let test_module = generate_test_module(&input);

	let imports = match crate_name("sp-runtime") {
		Ok(FoundCrate::Itself) => quote!(
			extern crate sp_runtime as _sp_runtime;
		),
		Ok(FoundCrate::Name(sp_runtime)) => {
			let ident = syn::Ident::new(&sp_runtime, Span::call_site());
			quote!( extern crate #ident as _sp_runtime; )
		},
		Err(e) => syn::Error::new(Span::call_site(), e).to_compile_error(),
	};

	let const_name = input.ident;
	let const_type = input.typ;

	quote!(
		const #const_name: #const_type = {
			#imports
			#declaration
		};
		#test_module
	)
	.into()
}

const MILLION: u32 = 1_000_000;

mod keyword {
	syn::custom_keyword!(curve);
	syn::custom_keyword!(min_inflation);
	syn::custom_keyword!(max_inflation);
	syn::custom_keyword!(ideal_stake);
	syn::custom_keyword!(falloff);
	syn::custom_keyword!(max_piece_count);
	syn::custom_keyword!(test_precision);
}

struct INposInput {
	ident: syn::Ident,
	typ: syn::Type,
	min_inflation: u32,
	ideal_stake: u32,
	max_inflation: u32,
	falloff: u32,
	max_piece_count: u32,
	test_precision: u32,
}

struct Bounds {
	min: u32,
	min_strict: bool,
	max: u32,
	max_strict: bool,
}

impl Bounds {
	fn check(&self, value: u32) -> bool {
		let wrong = (self.min_strict && value <= self.min) ||
			(!self.min_strict && value < self.min) ||
			(self.max_strict && value >= self.max) ||
			(!self.max_strict && value > self.max);

		!wrong
	}
}

impl core::fmt::Display for Bounds {
	fn fmt(&self, f: &mut core::fmt::Formatter<'_>) -> core::fmt::Result {
		write!(
			f,
			"{}{:07}; {:07}{}",
			if self.min_strict { "]" } else { "[" },
			self.min,
			self.max,
			if self.max_strict { "[" } else { "]" },
		)
	}
}

fn parse_field<Token: Parse + Default + ToTokens>(
	input: ParseStream,
	bounds: Bounds,
) -> syn::Result<u32> {
	<Token>::parse(input)?;
	<syn::Token![:]>::parse(input)?;
	let value_lit = syn::LitInt::parse(input)?;
	let value: u32 = value_lit.base10_parse()?;
	if !bounds.check(value) {
		return Err(syn::Error::new(
			value_lit.span(),
			format!(
				"Invalid {}: {},  must be in {}",
				Token::default().to_token_stream(),
				value,
				bounds,
			),
		))
	}

	Ok(value)
}

impl Parse for INposInput {
	fn parse(input: ParseStream) -> syn::Result<Self> {
		let args_input;

		<syn::Token![const]>::parse(input)?;
		let ident = <syn::Ident>::parse(input)?;
		<syn::Token![:]>::parse(input)?;
		let typ = <syn::Type>::parse(input)?;
		<syn::Token![=]>::parse(input)?;
		<keyword::curve>::parse(input)?;
		<syn::Token![!]>::parse(input)?;
		syn::parenthesized!(args_input in input);
		<syn::Token![;]>::parse(input)?;

		if !input.is_empty() {
			return Err(input.error("expected end of input stream, no token expected"))
		}

		let min_inflation = parse_field::<keyword::min_inflation>(
			&args_input,
			Bounds { min: 0, min_strict: true, max: 1_000_000, max_strict: false },
		)?;
		<syn::Token![,]>::parse(&args_input)?;
		let max_inflation = parse_field::<keyword::max_inflation>(
			&args_input,
			Bounds { min: min_inflation, min_strict: true, max: 1_000_000, max_strict: false },
		)?;
		<syn::Token![,]>::parse(&args_input)?;
		let ideal_stake = parse_field::<keyword::ideal_stake>(
			&args_input,
			Bounds { min: 0_100_000, min_strict: false, max: 0_900_000, max_strict: false },
		)?;
		<syn::Token![,]>::parse(&args_input)?;
		let falloff = parse_field::<keyword::falloff>(
			&args_input,
			Bounds { min: 0_010_000, min_strict: false, max: 1_000_000, max_strict: false },
		)?;
		<syn::Token![,]>::parse(&args_input)?;
		let max_piece_count = parse_field::<keyword::max_piece_count>(
			&args_input,
			Bounds { min: 2, min_strict: false, max: 1_000, max_strict: false },
		)?;
		<syn::Token![,]>::parse(&args_input)?;
		let test_precision = parse_field::<keyword::test_precision>(
			&args_input,
			Bounds { min: 0, min_strict: false, max: 1_000_000, max_strict: false },
		)?;
		<Option<syn::Token![,]>>::parse(&args_input)?;

		if !args_input.is_empty() {
			return Err(args_input.error("expected end of input stream, no token expected"))
		}

		Ok(Self {
			ident,
			typ,
			min_inflation,
			ideal_stake,
			max_inflation,
			falloff,
			max_piece_count,
			test_precision,
		})
	}
}

struct INPoS {
	i_0: u32,
	i_ideal_times_x_ideal: u32,
	i_ideal: u32,
	x_ideal: u32,
	d: u32,
}

impl INPoS {
	fn from_input(input: &INposInput) -> Self {
		INPoS {
			i_0: input.min_inflation,
			i_ideal: (input.max_inflation as u64 * MILLION as u64 / input.ideal_stake as u64)
				.try_into()
				.unwrap(),
			i_ideal_times_x_ideal: input.max_inflation,
			x_ideal: input.ideal_stake,
			d: input.falloff,
		}
	}

	// calculates x from:
	// y = i_0 + (i_ideal * x_ideal - i_0) * 2^((x_ideal - x)/d)
	// See web3 docs for the details
	fn compute_opposite_after_x_ideal(&self, y: u32) -> u32 {
		if y == self.i_0 {
			return u32::MAX
		}
		// Note: the log term calculated here represents a per_million value
		let log = log2(self.i_ideal_times_x_ideal - self.i_0, y - self.i_0);

		let term: u32 = ((self.d as u64 * log as u64) / 1_000_000).try_into().unwrap();

		self.x_ideal + term
	}
}

fn compute_points(input: &INposInput) -> Vec<(u32, u32)> {
	let inpos = INPoS::from_input(input);

	let mut points = vec![(0, inpos.i_0), (inpos.x_ideal, inpos.i_ideal_times_x_ideal)];

	// For each point p: (next_p.0 - p.0) < segment_length && (next_p.1 - p.1) < segment_length.
	// This ensures that the total number of segment doesn't overflow max_piece_count.
	let max_length = (input.max_inflation - input.min_inflation + 1_000_000 - inpos.x_ideal) /
		(input.max_piece_count - 1);

	let mut delta_y = max_length;
	let mut y = input.max_inflation;

	// The algorithm divide the curve in segment with vertical len and horizontal len less
	// than `max_length`. This is not very accurate in case of very consequent steep.
	while delta_y != 0 {
		let next_y = y - delta_y;

		if next_y <= input.min_inflation {
			delta_y = delta_y.saturating_sub(1);
			continue
		}

		let next_x = inpos.compute_opposite_after_x_ideal(next_y);

		if (next_x - points.last().unwrap().0) > max_length {
			delta_y = delta_y.saturating_sub(1);
			continue
		}

		if next_x >= 1_000_000 {
			let prev = points.last().unwrap();
			// Compute the y corresponding to x=1_000_000 using the this point and the previous one.

			let delta_y: u32 = ((next_x - 1_000_000) as u64 * (prev.1 - next_y) as u64 /
				(next_x - prev.0) as u64)
				.try_into()
				.unwrap();

			let y = next_y + delta_y;

			points.push((1_000_000, y));
			return points
		}
		points.push((next_x, next_y));
		y = next_y;
	}

	points.push((1_000_000, inpos.i_0));

	points
}

fn generate_piecewise_linear(points: Vec<(u32, u32)>) -> TokenStream2 {
	let mut points_tokens = quote!();

	let max = points
		.iter()
		.map(|&(_, x)| x)
		.max()
		.unwrap_or(0)
		.checked_mul(1_000)
		// clip at 1.0 for sanity only since it'll panic later if too high.
		.unwrap_or(1_000_000_000);

	for (x, y) in points {
		let error = || {
			panic!(
				"Generated reward curve approximation doesn't fit into [0, 1] -> [0, 1] because \
				 of point:
			x = {:07} per million
			y = {:07} per million",
				x, y
			)
		};

		let x_perbill = x.checked_mul(1_000).unwrap_or_else(error);
		let y_perbill = y.checked_mul(1_000).unwrap_or_else(error);

		points_tokens.extend(quote!(
			(
				_sp_runtime::Perbill::from_parts(#x_perbill),
				_sp_runtime::Perbill::from_parts(#y_perbill),
			),
		));
	}

	quote!(
		_sp_runtime::curve::PiecewiseLinear::<'static> {
			points: & [ #points_tokens ],
			maximum: _sp_runtime::Perbill::from_parts(#max),
		}
	)
}

fn generate_test_module(input: &INposInput) -> TokenStream2 {
	let inpos = INPoS::from_input(input);

	let ident = &input.ident;
	let precision = input.test_precision;
	let i_0 = inpos.i_0 as f64 / MILLION as f64;
	let i_ideal_times_x_ideal = inpos.i_ideal_times_x_ideal as f64 / MILLION as f64;
	let i_ideal = inpos.i_ideal as f64 / MILLION as f64;
	let x_ideal = inpos.x_ideal as f64 / MILLION as f64;
	let d = inpos.d as f64 / MILLION as f64;
	let max_piece_count = input.max_piece_count;

	quote!(
		#[cfg(test)]
		mod __pallet_staking_reward_curve_test_module {
			fn i_npos(x: f64) -> f64 {
				if x <= #x_ideal {
					#i_0 + x * (#i_ideal - #i_0 / #x_ideal)
				} else {
					#i_0 + (#i_ideal_times_x_ideal - #i_0) * 2_f64.powf((#x_ideal - x) / #d)
				}
			}

			const MILLION: u32 = 1_000_000;

			#[test]
			fn reward_curve_precision() {
				for &base in [MILLION, u32::MAX].iter() {
					let number_of_check = 100_000.min(base);
					for check_index in 0..=number_of_check {
						let i = (check_index as u64 * base as u64 / number_of_check as u64) as u32;
						let x = i as f64 / base as f64;
						let float_res = (i_npos(x) * base as f64).round() as u32;
						let int_res = super::#ident.calculate_for_fraction_times_denominator(i, base);
						let err = (
							(float_res.max(int_res) - float_res.min(int_res)) as u64
							* MILLION as u64
							/ float_res as u64
						) as u32;
						if err > #precision {
							panic!("\n\
								Generated reward curve approximation differ from real one:\n\t\
								for i = {} and base = {}, f(i/base) * base = {},\n\t\
								but approximation = {},\n\t\
								err = {:07} millionth,\n\t\
								try increase the number of segment: {} or the test_error: {}.\n",
								i, base, float_res, int_res, err, #max_piece_count, #precision
							);
						}
					}
				}
			}

			#[test]
			fn reward_curve_piece_count() {
				assert!(
					super::#ident.points.len() as u32 - 1 <= #max_piece_count,
					"Generated reward curve approximation is invalid: \
					has more points than specified, please fill an issue."
				);
			}
		}
	)
}