1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
// This file is part of Substrate.

// Copyright (C) 2020 Parity Technologies (UK) Ltd.
// SPDX-License-Identifier: Apache-2.0

// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// 	http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

//! The unsigned phase, and its miner.

use crate::{
	helpers, Call, Config, ElectionCompute, Error, FeasibilityError, Pallet, RawSolution,
	ReadySolution, RoundSnapshot, SolutionAccuracyOf, SolutionOf, SolutionOrSnapshotSize, Weight,
	WeightInfo,
};
use codec::{Decode, Encode};
use frame_support::{dispatch::DispatchResult, ensure, traits::Get};
use frame_system::offchain::SubmitTransaction;
use sp_arithmetic::Perbill;
use sp_npos_elections::{
	assignment_ratio_to_staked_normalized, assignment_staked_to_ratio_normalized, is_score_better,
	seq_phragmen, ElectionResult, NposSolution,
};
use sp_runtime::{
	offchain::storage::{MutateStorageError, StorageValueRef},
	traits::TrailingZeroInput,
	DispatchError, SaturatedConversion,
};
use sp_std::{boxed::Box, cmp::Ordering, convert::TryFrom, vec::Vec};

/// Storage key used to store the last block number at which offchain worker ran.
pub(crate) const OFFCHAIN_LAST_BLOCK: &[u8] = b"parity/multi-phase-unsigned-election";
/// Storage key used to store the offchain worker running status.
pub(crate) const OFFCHAIN_LOCK: &[u8] = b"parity/multi-phase-unsigned-election/lock";

/// Storage key used to cache the solution `call`.
pub(crate) const OFFCHAIN_CACHED_CALL: &[u8] = b"parity/multi-phase-unsigned-election/call";

/// A voter's fundamental data: their ID, their stake, and the list of candidates for whom they
/// voted.
pub type Voter<T> = (
	<T as frame_system::Config>::AccountId,
	sp_npos_elections::VoteWeight,
	Vec<<T as frame_system::Config>::AccountId>,
);

/// The relative distribution of a voter's stake among the winning targets.
pub type Assignment<T> =
	sp_npos_elections::Assignment<<T as frame_system::Config>::AccountId, SolutionAccuracyOf<T>>;

/// The [`IndexAssignment`][sp_npos_elections::IndexAssignment] type specialized for a particular
/// runtime `T`.
pub type IndexAssignmentOf<T> = sp_npos_elections::IndexAssignmentOf<SolutionOf<T>>;

#[derive(Debug, Eq, PartialEq)]
pub enum MinerError {
	/// An internal error in the NPoS elections crate.
	NposElections(sp_npos_elections::Error),
	/// Snapshot data was unavailable unexpectedly.
	SnapshotUnAvailable,
	/// Submitting a transaction to the pool failed.
	PoolSubmissionFailed,
	/// The pre-dispatch checks failed for the mined solution.
	PreDispatchChecksFailed(DispatchError),
	/// The solution generated from the miner is not feasible.
	Feasibility(FeasibilityError),
	/// Something went wrong fetching the lock.
	Lock(&'static str),
	/// Cannot restore a solution that was not stored.
	NoStoredSolution,
	/// Cached solution is not a `submit_unsigned` call.
	SolutionCallInvalid,
	/// Failed to store a solution.
	FailedToStoreSolution,
	/// There are no more voters to remove to trim the solution.
	NoMoreVoters,
}

impl From<sp_npos_elections::Error> for MinerError {
	fn from(e: sp_npos_elections::Error) -> Self {
		MinerError::NposElections(e)
	}
}

impl From<FeasibilityError> for MinerError {
	fn from(e: FeasibilityError) -> Self {
		MinerError::Feasibility(e)
	}
}

/// Save a given call into OCW storage.
fn save_solution<T: Config>(call: &Call<T>) -> Result<(), MinerError> {
	log!(debug, "saving a call to the offchain storage.");
	let storage = StorageValueRef::persistent(&OFFCHAIN_CACHED_CALL);
	match storage.mutate::<_, (), _>(|_| Ok(call.clone())) {
		Ok(_) => Ok(()),
		Err(MutateStorageError::ConcurrentModification(_)) =>
			Err(MinerError::FailedToStoreSolution),
		Err(MutateStorageError::ValueFunctionFailed(_)) => {
			// this branch should be unreachable according to the definition of
			// `StorageValueRef::mutate`: that function should only ever `Err` if the closure we
			// pass it returns an error. however, for safety in case the definition changes, we do
			// not optimize the branch away or panic.
			Err(MinerError::FailedToStoreSolution)
		},
	}
}

/// Get a saved solution from OCW storage if it exists.
fn restore_solution<T: Config>() -> Result<Call<T>, MinerError> {
	StorageValueRef::persistent(&OFFCHAIN_CACHED_CALL)
		.get()
		.ok()
		.flatten()
		.ok_or(MinerError::NoStoredSolution)
}

/// Clear a saved solution from OCW storage.
pub(super) fn kill_ocw_solution<T: Config>() {
	log!(debug, "clearing offchain call cache storage.");
	let mut storage = StorageValueRef::persistent(&OFFCHAIN_CACHED_CALL);
	storage.clear();
}

/// Clear the offchain repeat storage.
///
/// After calling this, the next offchain worker is guaranteed to work, with respect to the
/// frequency repeat.
fn clear_offchain_repeat_frequency() {
	let mut last_block = StorageValueRef::persistent(&OFFCHAIN_LAST_BLOCK);
	last_block.clear();
}

/// `true` when OCW storage contains a solution
#[cfg(test)]
fn ocw_solution_exists<T: Config>() -> bool {
	matches!(StorageValueRef::persistent(&OFFCHAIN_CACHED_CALL).get::<Call<T>>(), Ok(Some(_)))
}

impl<T: Config> Pallet<T> {
	/// Attempt to restore a solution from cache. Otherwise, compute it fresh. Either way, submit
	/// if our call's score is greater than that of the cached solution.
	pub fn restore_or_compute_then_maybe_submit() -> Result<(), MinerError> {
		log!(debug, "miner attempting to restore or compute an unsigned solution.");

		let call = restore_solution::<T>()
			.and_then(|call| {
				// ensure the cached call is still current before submitting
				if let Call::submit_unsigned(solution, _) = &call {
					// prevent errors arising from state changes in a forkful chain
					Self::basic_checks(solution, "restored")?;
					Ok(call)
				} else {
					Err(MinerError::SolutionCallInvalid)
				}
			})
			.or_else::<MinerError, _>(|error| {
				log!(debug, "restoring solution failed due to {:?}", error);
				match error {
					MinerError::NoStoredSolution => {
						log!(trace, "mining a new solution.");
						// if not present or cache invalidated due to feasibility, regenerate.
						// note that failing `Feasibility` can only mean that the solution was
						// computed over a snapshot that has changed due to a fork.
						let call = Self::mine_checked_call()?;
						save_solution(&call)?;
						Ok(call)
					},
					MinerError::Feasibility(_) => {
						log!(trace, "wiping infeasible solution.");
						// kill the infeasible solution, hopefully in the next runs (whenever they
						// may be) we mine a new one.
						kill_ocw_solution::<T>();
						clear_offchain_repeat_frequency();
						Err(error)
					},
					_ => {
						// nothing to do. Return the error as-is.
						Err(error)
					},
				}
			})?;

		Self::submit_call(call)
	}

	/// Mine a new solution, cache it, and submit it back to the chain as an unsigned transaction.
	pub fn mine_check_save_submit() -> Result<(), MinerError> {
		log!(debug, "miner attempting to compute an unsigned solution.");

		let call = Self::mine_checked_call()?;
		save_solution(&call)?;
		Self::submit_call(call)
	}

	/// Mine a new solution as a call. Performs all checks.
	pub fn mine_checked_call() -> Result<Call<T>, MinerError> {
		let iters = Self::get_balancing_iters();
		// get the solution, with a load of checks to ensure if submitted, IT IS ABSOLUTELY VALID.
		let (raw_solution, witness) = Self::mine_and_check(iters)?;

		let score = raw_solution.score.clone();
		let call: Call<T> = Call::submit_unsigned(Box::new(raw_solution), witness).into();

		log!(
			debug,
			"mined a solution with score {:?} and size {}",
			score,
			call.using_encoded(|b| b.len())
		);

		Ok(call)
	}

	fn submit_call(call: Call<T>) -> Result<(), MinerError> {
		log!(debug, "miner submitting a solution as an unsigned transaction");

		SubmitTransaction::<T, Call<T>>::submit_unsigned_transaction(call.into())
			.map_err(|_| MinerError::PoolSubmissionFailed)
	}

	// perform basic checks of a solution's validity
	//
	// Performance: note that it internally clones the provided solution.
	pub fn basic_checks(
		raw_solution: &RawSolution<SolutionOf<T>>,
		solution_type: &str,
	) -> Result<(), MinerError> {
		Self::unsigned_pre_dispatch_checks(raw_solution).map_err(|err| {
			log!(debug, "pre-dispatch checks failed for {} solution: {:?}", solution_type, err);
			MinerError::PreDispatchChecksFailed(err)
		})?;

		Self::feasibility_check(raw_solution.clone(), ElectionCompute::Unsigned).map_err(
			|err| {
				log!(debug, "feasibility check failed for {} solution: {:?}", solution_type, err);
				err
			},
		)?;

		Ok(())
	}

	/// Mine a new npos solution, with all the relevant checks to make sure that it will be accepted
	/// to the chain.
	///
	/// If you want an unchecked solution, use [`Pallet::mine_solution`].
	/// If you want a checked solution and submit it at the same time, use
	/// [`Pallet::mine_check_save_submit`].
	pub fn mine_and_check(
		iters: usize,
	) -> Result<(RawSolution<SolutionOf<T>>, SolutionOrSnapshotSize), MinerError> {
		let (raw_solution, witness) = Self::mine_solution(iters)?;
		Self::basic_checks(&raw_solution, "mined")?;
		Ok((raw_solution, witness))
	}

	/// Mine a new npos solution.
	pub fn mine_solution(
		iters: usize,
	) -> Result<(RawSolution<SolutionOf<T>>, SolutionOrSnapshotSize), MinerError> {
		let RoundSnapshot { voters, targets } =
			Self::snapshot().ok_or(MinerError::SnapshotUnAvailable)?;
		let desired_targets = Self::desired_targets().ok_or(MinerError::SnapshotUnAvailable)?;

		seq_phragmen::<_, SolutionAccuracyOf<T>>(
			desired_targets as usize,
			targets,
			voters,
			Some((iters, 0)),
		)
		.map_err(Into::into)
		.and_then(Self::prepare_election_result)
	}

	/// Convert a raw solution from [`sp_npos_elections::ElectionResult`] to [`RawSolution`], which
	/// is ready to be submitted to the chain.
	///
	/// Will always reduce the solution as well.
	pub fn prepare_election_result(
		election_result: ElectionResult<T::AccountId, SolutionAccuracyOf<T>>,
	) -> Result<(RawSolution<SolutionOf<T>>, SolutionOrSnapshotSize), MinerError> {
		// NOTE: This code path is generally not optimized as it is run offchain. Could use some at
		// some point though.

		// storage items. Note: we have already read this from storage, they must be in cache.
		let RoundSnapshot { voters, targets } =
			Self::snapshot().ok_or(MinerError::SnapshotUnAvailable)?;
		let desired_targets = Self::desired_targets().ok_or(MinerError::SnapshotUnAvailable)?;

		// now make some helper closures.
		let cache = helpers::generate_voter_cache::<T>(&voters);
		let voter_index = helpers::voter_index_fn::<T>(&cache);
		let target_index = helpers::target_index_fn::<T>(&targets);
		let voter_at = helpers::voter_at_fn::<T>(&voters);
		let target_at = helpers::target_at_fn::<T>(&targets);
		let stake_of = helpers::stake_of_fn::<T>(&voters, &cache);

		// Compute the size of a solution comprised of the selected arguments.
		//
		// This function completes in `O(edges)`; it's expensive, but linear.
		let encoded_size_of = |assignments: &[IndexAssignmentOf<T>]| {
			SolutionOf::<T>::try_from(assignments).map(|s| s.encoded_size())
		};

		let ElectionResult { assignments, winners } = election_result;

		// Reduce (requires round-trip to staked form)
		let sorted_assignments = {
			// convert to staked and reduce.
			let mut staked = assignment_ratio_to_staked_normalized(assignments, &stake_of)?;

			// we reduce before sorting in order to ensure that the reduction process doesn't
			// accidentally change the sort order
			sp_npos_elections::reduce(&mut staked);

			// Sort the assignments by reversed voter stake. This ensures that we can efficiently
			// truncate the list.
			staked.sort_by_key(
				|sp_npos_elections::StakedAssignment::<T::AccountId> { who, .. }| {
					// though staked assignments are expressed in terms of absolute stake, we'd
					// still need to iterate over all votes in order to actually compute the total
					// stake. it should be faster to look it up from the cache.
					let stake = cache
						.get(who)
						.map(|idx| {
							let (_, stake, _) = voters[*idx];
							stake
						})
						.unwrap_or_default();
					sp_std::cmp::Reverse(stake)
				},
			);

			// convert back.
			assignment_staked_to_ratio_normalized(staked)?
		};

		// convert to `IndexAssignment`. This improves the runtime complexity of repeatedly
		// converting to `Solution`.
		let mut index_assignments = sorted_assignments
			.into_iter()
			.map(|assignment| IndexAssignmentOf::<T>::new(&assignment, &voter_index, &target_index))
			.collect::<Result<Vec<_>, _>>()?;

		// trim assignments list for weight and length.
		let size =
			SolutionOrSnapshotSize { voters: voters.len() as u32, targets: targets.len() as u32 };
		Self::trim_assignments_weight(
			desired_targets,
			size,
			T::MinerMaxWeight::get(),
			&mut index_assignments,
		);
		Self::trim_assignments_length(
			T::MinerMaxLength::get(),
			&mut index_assignments,
			&encoded_size_of,
		)?;

		// now make solution.
		let solution = SolutionOf::<T>::try_from(&index_assignments)?;

		// re-calc score.
		let winners = sp_npos_elections::to_without_backing(winners);
		let score = solution.clone().score(&winners, stake_of, voter_at, target_at)?;

		let round = Self::round();
		Ok((RawSolution { solution, score, round }, size))
	}

	/// Get a random number of iterations to run the balancing in the OCW.
	///
	/// Uses the offchain seed to generate a random number, maxed with
	/// [`Config::MinerMaxIterations`].
	pub fn get_balancing_iters() -> usize {
		match T::MinerMaxIterations::get() {
			0 => 0,
			max @ _ => {
				let seed = sp_io::offchain::random_seed();
				let random = <u32>::decode(&mut TrailingZeroInput::new(seed.as_ref()))
					.expect("input is padded with zeroes; qed") %
					max.saturating_add(1);
				random as usize
			},
		}
	}

	/// Greedily reduce the size of the solution to fit into the block w.r.t. weight.
	///
	/// The weight of the solution is foremost a function of the number of voters (i.e.
	/// `assignments.len()`). Aside from this, the other components of the weight are invariant. The
	/// number of winners shall not be changed (otherwise the solution is invalid) and the
	/// `ElectionSize` is merely a representation of the total number of stakers.
	///
	/// Thus, we reside to stripping away some voters from the `assignments`.
	///
	/// Note that the solution is already computed, and the winners are elected based on the merit
	/// of the entire stake in the system. Nonetheless, some of the voters will be removed further
	/// down the line.
	///
	/// Indeed, the score must be computed **after** this step. If this step reduces the score too
	/// much or remove a winner, then the solution must be discarded **after** this step.
	pub fn trim_assignments_weight(
		desired_targets: u32,
		size: SolutionOrSnapshotSize,
		max_weight: Weight,
		assignments: &mut Vec<IndexAssignmentOf<T>>,
	) {
		let maximum_allowed_voters =
			Self::maximum_voter_for_weight::<T::WeightInfo>(desired_targets, size, max_weight);
		let removing: usize =
			assignments.len().saturating_sub(maximum_allowed_voters.saturated_into());
		log!(
			debug,
			"from {} assignments, truncating to {} for weight, removing {}",
			assignments.len(),
			maximum_allowed_voters,
			removing,
		);
		assignments.truncate(maximum_allowed_voters as usize);
	}

	/// Greedily reduce the size of the solution to fit into the block w.r.t length.
	///
	/// The length of the solution is largely a function of the number of voters. The number of
	/// winners cannot be changed. Thus, to reduce the solution size, we need to strip voters.
	///
	/// Note that this solution is already computed, and winners are elected based on the merit of
	/// the total stake in the system. Nevertheless, some of the voters may be removed here.
	///
	/// Sometimes, removing a voter can cause a validator to also be implicitly removed, if
	/// that voter was the only backer of that winner. In such cases, this solution is invalid,
	/// which will be caught prior to submission.
	///
	/// The score must be computed **after** this step. If this step reduces the score too much,
	/// then the solution must be discarded.
	pub fn trim_assignments_length(
		max_allowed_length: u32,
		assignments: &mut Vec<IndexAssignmentOf<T>>,
		encoded_size_of: impl Fn(&[IndexAssignmentOf<T>]) -> Result<usize, sp_npos_elections::Error>,
	) -> Result<(), MinerError> {
		// Perform a binary search for the max subset of which can fit into the allowed
		// length. Having discovered that, we can truncate efficiently.
		let max_allowed_length: usize = max_allowed_length.saturated_into();
		let mut high = assignments.len();
		let mut low = 0;

		// not much we can do if assignments are already empty.
		if high == low {
			return Ok(())
		}

		while high - low > 1 {
			let test = (high + low) / 2;
			if encoded_size_of(&assignments[..test])? <= max_allowed_length {
				low = test;
			} else {
				high = test;
			}
		}
		let maximum_allowed_voters = if low < assignments.len() &&
			encoded_size_of(&assignments[..low + 1])? <= max_allowed_length
		{
			low + 1
		} else {
			low
		};

		// ensure our post-conditions are correct
		debug_assert!(
			encoded_size_of(&assignments[..maximum_allowed_voters]).unwrap() <= max_allowed_length
		);
		debug_assert!(if maximum_allowed_voters < assignments.len() {
			encoded_size_of(&assignments[..maximum_allowed_voters + 1]).unwrap() >
				max_allowed_length
		} else {
			true
		});

		// NOTE: before this point, every access was immutable.
		// after this point, we never error.
		// check before edit.

		log!(
			debug,
			"from {} assignments, truncating to {} for length, removing {}",
			assignments.len(),
			maximum_allowed_voters,
			assignments.len().saturating_sub(maximum_allowed_voters),
		);
		assignments.truncate(maximum_allowed_voters);

		Ok(())
	}

	/// Find the maximum `len` that a solution can have in order to fit into the block weight.
	///
	/// This only returns a value between zero and `size.nominators`.
	pub fn maximum_voter_for_weight<W: WeightInfo>(
		desired_winners: u32,
		size: SolutionOrSnapshotSize,
		max_weight: Weight,
	) -> u32 {
		if size.voters < 1 {
			return size.voters
		}

		let max_voters = size.voters.max(1);
		let mut voters = max_voters;

		// helper closures.
		let weight_with = |active_voters: u32| -> Weight {
			W::submit_unsigned(size.voters, size.targets, active_voters, desired_winners)
		};

		let next_voters = |current_weight: Weight, voters: u32, step: u32| -> Result<u32, ()> {
			match current_weight.cmp(&max_weight) {
				Ordering::Less => {
					let next_voters = voters.checked_add(step);
					match next_voters {
						Some(voters) if voters < max_voters => Ok(voters),
						_ => Err(()),
					}
				},
				Ordering::Greater => voters.checked_sub(step).ok_or(()),
				Ordering::Equal => Ok(voters),
			}
		};

		// First binary-search the right amount of voters
		let mut step = voters / 2;
		let mut current_weight = weight_with(voters);

		while step > 0 {
			match next_voters(current_weight, voters, step) {
				// proceed with the binary search
				Ok(next) if next != voters => {
					voters = next;
				},
				// we are out of bounds, break out of the loop.
				Err(()) => break,
				// we found the right value - early exit the function.
				Ok(next) => return next,
			}
			step = step / 2;
			current_weight = weight_with(voters);
		}

		// Time to finish. We might have reduced less than expected due to rounding error. Increase
		// one last time if we have any room left, the reduce until we are sure we are below limit.
		while voters + 1 <= max_voters && weight_with(voters + 1) < max_weight {
			voters += 1;
		}
		while voters.checked_sub(1).is_some() && weight_with(voters) > max_weight {
			voters -= 1;
		}

		let final_decision = voters.min(size.voters);
		debug_assert!(
			weight_with(final_decision) <= max_weight,
			"weight_with({}) <= {}",
			final_decision,
			max_weight,
		);
		final_decision
	}

	/// Checks if an execution of the offchain worker is permitted at the given block number, or
	/// not.
	///
	/// This makes sure that
	/// 1. we don't run on previous blocks in case of a re-org
	/// 2. we don't run twice within a window of length `T::OffchainRepeat`.
	///
	/// Returns `Ok(())` if offchain worker limit is respected, `Err(reason)` otherwise. If `Ok()`
	/// is returned, `now` is written in storage and will be used in further calls as the baseline.
	pub fn ensure_offchain_repeat_frequency(now: T::BlockNumber) -> Result<(), MinerError> {
		let threshold = T::OffchainRepeat::get();
		let last_block = StorageValueRef::persistent(&OFFCHAIN_LAST_BLOCK);

		let mutate_stat = last_block.mutate::<_, &'static str, _>(
			|maybe_head: Result<Option<T::BlockNumber>, _>| {
				match maybe_head {
					Ok(Some(head)) if now < head => Err("fork."),
					Ok(Some(head)) if now >= head && now <= head + threshold =>
						Err("recently executed."),
					Ok(Some(head)) if now > head + threshold => {
						// we can run again now. Write the new head.
						Ok(now)
					},
					_ => {
						// value doesn't exists. Probably this node just booted up. Write, and run
						Ok(now)
					},
				}
			},
		);

		match mutate_stat {
			// all good
			Ok(_) => Ok(()),
			// failed to write.
			Err(MutateStorageError::ConcurrentModification(_)) =>
				Err(MinerError::Lock("failed to write to offchain db (concurrent modification).")),
			// fork etc.
			Err(MutateStorageError::ValueFunctionFailed(why)) => Err(MinerError::Lock(why)),
		}
	}

	/// Do the basics checks that MUST happen during the validation and pre-dispatch of an unsigned
	/// transaction.
	///
	/// Can optionally also be called during dispatch, if needed.
	///
	/// NOTE: Ideally, these tests should move more and more outside of this and more to the miner's
	/// code, so that we do less and less storage reads here.
	pub fn unsigned_pre_dispatch_checks(
		raw_solution: &RawSolution<SolutionOf<T>>,
	) -> DispatchResult {
		// ensure solution is timely. Don't panic yet. This is a cheap check.
		ensure!(Self::current_phase().is_unsigned_open(), Error::<T>::PreDispatchEarlySubmission);

		// ensure round is current
		ensure!(Self::round() == raw_solution.round, Error::<T>::OcwCallWrongEra);

		// ensure correct number of winners.
		ensure!(
			Self::desired_targets().unwrap_or_default() ==
				raw_solution.solution.unique_targets().len() as u32,
			Error::<T>::PreDispatchWrongWinnerCount,
		);

		// ensure score is being improved. Panic henceforth.
		ensure!(
			Self::queued_solution().map_or(true, |q: ReadySolution<_>| is_score_better::<Perbill>(
				raw_solution.score,
				q.score,
				T::SolutionImprovementThreshold::get()
			)),
			Error::<T>::PreDispatchWeakSubmission,
		);

		Ok(())
	}
}

#[cfg(test)]
mod max_weight {
	#![allow(unused_variables)]
	use super::*;
	use crate::mock::MultiPhase;

	struct TestWeight;
	impl crate::weights::WeightInfo for TestWeight {
		fn on_initialize_nothing() -> Weight {
			unreachable!()
		}
		fn on_initialize_open_signed() -> Weight {
			unreachable!()
		}
		fn on_initialize_open_unsigned_with_snapshot() -> Weight {
			unreachable!()
		}
		fn elect_queued(_v: u32, _t: u32, _a: u32, _d: u32) -> Weight {
			0
		}
		fn on_initialize_open_unsigned_without_snapshot() -> Weight {
			unreachable!()
		}
		fn finalize_signed_phase_accept_solution() -> Weight {
			unreachable!()
		}
		fn finalize_signed_phase_reject_solution() -> Weight {
			unreachable!()
		}
		fn submit(c: u32) -> Weight {
			unreachable!()
		}
		fn submit_unsigned(v: u32, t: u32, a: u32, d: u32) -> Weight {
			(0 * v + 0 * t + 1000 * a + 0 * d) as Weight
		}
		fn feasibility_check(v: u32, _t: u32, a: u32, d: u32) -> Weight {
			unreachable!()
		}
	}

	#[test]
	fn find_max_voter_binary_search_works() {
		let w = SolutionOrSnapshotSize { voters: 10, targets: 0 };

		assert_eq!(MultiPhase::maximum_voter_for_weight::<TestWeight>(0, w, 0), 0);
		assert_eq!(MultiPhase::maximum_voter_for_weight::<TestWeight>(0, w, 1), 0);
		assert_eq!(MultiPhase::maximum_voter_for_weight::<TestWeight>(0, w, 999), 0);
		assert_eq!(MultiPhase::maximum_voter_for_weight::<TestWeight>(0, w, 1000), 1);
		assert_eq!(MultiPhase::maximum_voter_for_weight::<TestWeight>(0, w, 1001), 1);
		assert_eq!(MultiPhase::maximum_voter_for_weight::<TestWeight>(0, w, 1990), 1);
		assert_eq!(MultiPhase::maximum_voter_for_weight::<TestWeight>(0, w, 1999), 1);
		assert_eq!(MultiPhase::maximum_voter_for_weight::<TestWeight>(0, w, 2000), 2);
		assert_eq!(MultiPhase::maximum_voter_for_weight::<TestWeight>(0, w, 2001), 2);
		assert_eq!(MultiPhase::maximum_voter_for_weight::<TestWeight>(0, w, 2010), 2);
		assert_eq!(MultiPhase::maximum_voter_for_weight::<TestWeight>(0, w, 2990), 2);
		assert_eq!(MultiPhase::maximum_voter_for_weight::<TestWeight>(0, w, 2999), 2);
		assert_eq!(MultiPhase::maximum_voter_for_weight::<TestWeight>(0, w, 3000), 3);
		assert_eq!(MultiPhase::maximum_voter_for_weight::<TestWeight>(0, w, 3333), 3);
		assert_eq!(MultiPhase::maximum_voter_for_weight::<TestWeight>(0, w, 5500), 5);
		assert_eq!(MultiPhase::maximum_voter_for_weight::<TestWeight>(0, w, 7777), 7);
		assert_eq!(MultiPhase::maximum_voter_for_weight::<TestWeight>(0, w, 9999), 9);
		assert_eq!(MultiPhase::maximum_voter_for_weight::<TestWeight>(0, w, 10_000), 10);
		assert_eq!(MultiPhase::maximum_voter_for_weight::<TestWeight>(0, w, 10_999), 10);
		assert_eq!(MultiPhase::maximum_voter_for_weight::<TestWeight>(0, w, 11_000), 10);
		assert_eq!(MultiPhase::maximum_voter_for_weight::<TestWeight>(0, w, 22_000), 10);

		let w = SolutionOrSnapshotSize { voters: 1, targets: 0 };

		assert_eq!(MultiPhase::maximum_voter_for_weight::<TestWeight>(0, w, 0), 0);
		assert_eq!(MultiPhase::maximum_voter_for_weight::<TestWeight>(0, w, 1), 0);
		assert_eq!(MultiPhase::maximum_voter_for_weight::<TestWeight>(0, w, 999), 0);
		assert_eq!(MultiPhase::maximum_voter_for_weight::<TestWeight>(0, w, 1000), 1);
		assert_eq!(MultiPhase::maximum_voter_for_weight::<TestWeight>(0, w, 1001), 1);
		assert_eq!(MultiPhase::maximum_voter_for_weight::<TestWeight>(0, w, 1990), 1);
		assert_eq!(MultiPhase::maximum_voter_for_weight::<TestWeight>(0, w, 1999), 1);
		assert_eq!(MultiPhase::maximum_voter_for_weight::<TestWeight>(0, w, 2000), 1);
		assert_eq!(MultiPhase::maximum_voter_for_weight::<TestWeight>(0, w, 2001), 1);
		assert_eq!(MultiPhase::maximum_voter_for_weight::<TestWeight>(0, w, 2010), 1);
		assert_eq!(MultiPhase::maximum_voter_for_weight::<TestWeight>(0, w, 3333), 1);

		let w = SolutionOrSnapshotSize { voters: 2, targets: 0 };

		assert_eq!(MultiPhase::maximum_voter_for_weight::<TestWeight>(0, w, 0), 0);
		assert_eq!(MultiPhase::maximum_voter_for_weight::<TestWeight>(0, w, 1), 0);
		assert_eq!(MultiPhase::maximum_voter_for_weight::<TestWeight>(0, w, 999), 0);
		assert_eq!(MultiPhase::maximum_voter_for_weight::<TestWeight>(0, w, 1000), 1);
		assert_eq!(MultiPhase::maximum_voter_for_weight::<TestWeight>(0, w, 1001), 1);
		assert_eq!(MultiPhase::maximum_voter_for_weight::<TestWeight>(0, w, 1999), 1);
		assert_eq!(MultiPhase::maximum_voter_for_weight::<TestWeight>(0, w, 2000), 2);
		assert_eq!(MultiPhase::maximum_voter_for_weight::<TestWeight>(0, w, 2001), 2);
		assert_eq!(MultiPhase::maximum_voter_for_weight::<TestWeight>(0, w, 2010), 2);
		assert_eq!(MultiPhase::maximum_voter_for_weight::<TestWeight>(0, w, 3333), 2);
	}
}

#[cfg(test)]
mod tests {
	use super::*;
	use crate::{
		mock::{
			roll_to, roll_to_with_ocw, trim_helpers, witness, BlockNumber, Call as OuterCall,
			ExtBuilder, Extrinsic, MinerMaxWeight, MultiPhase, Origin, Runtime, System,
			TestNposSolution, TrimHelpers, UnsignedPhase,
		},
		CurrentPhase, InvalidTransaction, Phase, QueuedSolution, TransactionSource,
		TransactionValidityError,
	};
	use frame_benchmarking::Zero;
	use frame_support::{assert_noop, assert_ok, dispatch::Dispatchable, traits::OffchainWorker};
	use sp_npos_elections::IndexAssignment;
	use sp_runtime::{
		offchain::storage_lock::{BlockAndTime, StorageLock},
		traits::ValidateUnsigned,
		PerU16,
	};

	type Assignment = crate::unsigned::Assignment<Runtime>;

	#[test]
	fn validate_unsigned_retracts_wrong_phase() {
		ExtBuilder::default().desired_targets(0).build_and_execute(|| {
			let solution =
				RawSolution::<TestNposSolution> { score: [5, 0, 0], ..Default::default() };
			let call = Call::submit_unsigned(Box::new(solution.clone()), witness());

			// initial
			assert_eq!(MultiPhase::current_phase(), Phase::Off);
			assert!(matches!(
				<MultiPhase as ValidateUnsigned>::validate_unsigned(
					TransactionSource::Local,
					&call
				)
				.unwrap_err(),
				TransactionValidityError::Invalid(InvalidTransaction::Custom(0))
			));
			assert!(matches!(
				<MultiPhase as ValidateUnsigned>::pre_dispatch(&call).unwrap_err(),
				TransactionValidityError::Invalid(InvalidTransaction::Custom(0))
			));

			// signed
			roll_to(15);
			assert_eq!(MultiPhase::current_phase(), Phase::Signed);
			assert!(matches!(
				<MultiPhase as ValidateUnsigned>::validate_unsigned(
					TransactionSource::Local,
					&call
				)
				.unwrap_err(),
				TransactionValidityError::Invalid(InvalidTransaction::Custom(0))
			));
			assert!(matches!(
				<MultiPhase as ValidateUnsigned>::pre_dispatch(&call).unwrap_err(),
				TransactionValidityError::Invalid(InvalidTransaction::Custom(0))
			));

			// unsigned
			roll_to(25);
			assert!(MultiPhase::current_phase().is_unsigned());

			assert!(<MultiPhase as ValidateUnsigned>::validate_unsigned(
				TransactionSource::Local,
				&call
			)
			.is_ok());
			assert!(<MultiPhase as ValidateUnsigned>::pre_dispatch(&call).is_ok());

			// unsigned -- but not enabled.
			<CurrentPhase<Runtime>>::put(Phase::Unsigned((false, 25)));
			assert!(MultiPhase::current_phase().is_unsigned());
			assert!(matches!(
				<MultiPhase as ValidateUnsigned>::validate_unsigned(
					TransactionSource::Local,
					&call
				)
				.unwrap_err(),
				TransactionValidityError::Invalid(InvalidTransaction::Custom(0))
			));
			assert!(matches!(
				<MultiPhase as ValidateUnsigned>::pre_dispatch(&call).unwrap_err(),
				TransactionValidityError::Invalid(InvalidTransaction::Custom(0))
			));
		})
	}

	#[test]
	fn validate_unsigned_retracts_low_score() {
		ExtBuilder::default().desired_targets(0).build_and_execute(|| {
			roll_to(25);
			assert!(MultiPhase::current_phase().is_unsigned());

			let solution =
				RawSolution::<TestNposSolution> { score: [5, 0, 0], ..Default::default() };
			let call = Call::submit_unsigned(Box::new(solution.clone()), witness());

			// initial
			assert!(<MultiPhase as ValidateUnsigned>::validate_unsigned(
				TransactionSource::Local,
				&call
			)
			.is_ok());
			assert!(<MultiPhase as ValidateUnsigned>::pre_dispatch(&call).is_ok());

			// set a better score
			let ready = ReadySolution { score: [10, 0, 0], ..Default::default() };
			<QueuedSolution<Runtime>>::put(ready);

			// won't work anymore.
			assert!(matches!(
				<MultiPhase as ValidateUnsigned>::validate_unsigned(
					TransactionSource::Local,
					&call
				)
				.unwrap_err(),
				TransactionValidityError::Invalid(InvalidTransaction::Custom(2))
			));
			assert!(matches!(
				<MultiPhase as ValidateUnsigned>::pre_dispatch(&call).unwrap_err(),
				TransactionValidityError::Invalid(InvalidTransaction::Custom(2))
			));
		})
	}

	#[test]
	fn validate_unsigned_retracts_incorrect_winner_count() {
		ExtBuilder::default().desired_targets(1).build_and_execute(|| {
			roll_to(25);
			assert!(MultiPhase::current_phase().is_unsigned());

			let raw = RawSolution::<TestNposSolution> { score: [5, 0, 0], ..Default::default() };
			let call = Call::submit_unsigned(Box::new(raw.clone()), witness());
			assert_eq!(raw.solution.unique_targets().len(), 0);

			// won't work anymore.
			assert!(matches!(
				<MultiPhase as ValidateUnsigned>::validate_unsigned(
					TransactionSource::Local,
					&call
				)
				.unwrap_err(),
				TransactionValidityError::Invalid(InvalidTransaction::Custom(1))
			));
		})
	}

	#[test]
	fn priority_is_set() {
		ExtBuilder::default()
			.miner_tx_priority(20)
			.desired_targets(0)
			.build_and_execute(|| {
				roll_to(25);
				assert!(MultiPhase::current_phase().is_unsigned());

				let solution =
					RawSolution::<TestNposSolution> { score: [5, 0, 0], ..Default::default() };
				let call = Call::submit_unsigned(Box::new(solution.clone()), witness());

				assert_eq!(
					<MultiPhase as ValidateUnsigned>::validate_unsigned(
						TransactionSource::Local,
						&call
					)
					.unwrap()
					.priority,
					25
				);
			})
	}

	#[test]
	#[should_panic(expected = "Invalid unsigned submission must produce invalid block and \
	                           deprive validator from their authoring reward.: \
	                           Module { index: 2, error: 1, message: \
	                           Some(\"PreDispatchWrongWinnerCount\") }")]
	fn unfeasible_solution_panics() {
		ExtBuilder::default().build_and_execute(|| {
			roll_to(25);
			assert!(MultiPhase::current_phase().is_unsigned());

			// This is in itself an invalid BS solution.
			let solution =
				RawSolution::<TestNposSolution> { score: [5, 0, 0], ..Default::default() };
			let call = Call::submit_unsigned(Box::new(solution.clone()), witness());
			let outer_call: OuterCall = call.into();
			let _ = outer_call.dispatch(Origin::none());
		})
	}

	#[test]
	#[should_panic(expected = "Invalid unsigned submission must produce invalid block and \
	                           deprive validator from their authoring reward.")]
	fn wrong_witness_panics() {
		ExtBuilder::default().build_and_execute(|| {
			roll_to(25);
			assert!(MultiPhase::current_phase().is_unsigned());

			// This solution is unfeasible as well, but we won't even get there.
			let solution =
				RawSolution::<TestNposSolution> { score: [5, 0, 0], ..Default::default() };

			let mut correct_witness = witness();
			correct_witness.voters += 1;
			correct_witness.targets -= 1;
			let call = Call::submit_unsigned(Box::new(solution.clone()), correct_witness);
			let outer_call: OuterCall = call.into();
			let _ = outer_call.dispatch(Origin::none());
		})
	}

	#[test]
	fn miner_works() {
		ExtBuilder::default().build_and_execute(|| {
			roll_to(25);
			assert!(MultiPhase::current_phase().is_unsigned());

			// ensure we have snapshots in place.
			assert!(MultiPhase::snapshot().is_some());
			assert_eq!(MultiPhase::desired_targets().unwrap(), 2);

			// mine seq_phragmen solution with 2 iters.
			let (solution, witness) = MultiPhase::mine_solution(2).unwrap();

			// ensure this solution is valid.
			assert!(MultiPhase::queued_solution().is_none());
			assert_ok!(MultiPhase::submit_unsigned(Origin::none(), Box::new(solution), witness));
			assert!(MultiPhase::queued_solution().is_some());
		})
	}

	#[test]
	fn miner_trims_weight() {
		ExtBuilder::default()
			.miner_weight(100)
			.mock_weight_info(true)
			.build_and_execute(|| {
				roll_to(25);
				assert!(MultiPhase::current_phase().is_unsigned());

				let (raw, witness) = MultiPhase::mine_solution(2).unwrap();
				let solution_weight = <Runtime as Config>::WeightInfo::submit_unsigned(
					witness.voters,
					witness.targets,
					raw.solution.voter_count() as u32,
					raw.solution.unique_targets().len() as u32,
				);
				// default solution will have 5 edges (5 * 5 + 10)
				assert_eq!(solution_weight, 35);
				assert_eq!(raw.solution.voter_count(), 5);

				// now reduce the max weight
				<MinerMaxWeight>::set(25);

				let (raw, witness) = MultiPhase::mine_solution(2).unwrap();
				let solution_weight = <Runtime as Config>::WeightInfo::submit_unsigned(
					witness.voters,
					witness.targets,
					raw.solution.voter_count() as u32,
					raw.solution.unique_targets().len() as u32,
				);
				// default solution will have 5 edges (5 * 5 + 10)
				assert_eq!(solution_weight, 25);
				assert_eq!(raw.solution.voter_count(), 3);
			})
	}

	#[test]
	fn miner_will_not_submit_if_not_enough_winners() {
		let (mut ext, _) = ExtBuilder::default().desired_targets(8).build_offchainify(0);
		ext.execute_with(|| {
			roll_to(25);
			assert!(MultiPhase::current_phase().is_unsigned());

			assert_eq!(
				MultiPhase::mine_check_save_submit().unwrap_err(),
				MinerError::PreDispatchChecksFailed(DispatchError::Module {
					index: 2,
					error: 1,
					message: Some("PreDispatchWrongWinnerCount"),
				}),
			);
		})
	}

	#[test]
	fn unsigned_per_dispatch_checks_can_only_submit_threshold_better() {
		ExtBuilder::default()
			.desired_targets(1)
			.add_voter(7, 2, vec![10])
			.add_voter(8, 5, vec![10])
			.solution_improvement_threshold(Perbill::from_percent(50))
			.build_and_execute(|| {
				roll_to(25);
				assert!(MultiPhase::current_phase().is_unsigned());
				assert_eq!(MultiPhase::desired_targets().unwrap(), 1);

				// an initial solution
				let result = ElectionResult {
					// note: This second element of backing stake is not important here.
					winners: vec![(10, 10)],
					assignments: vec![Assignment {
						who: 10,
						distribution: vec![(10, PerU16::one())],
					}],
				};
				let (solution, witness) = MultiPhase::prepare_election_result(result).unwrap();
				assert_ok!(MultiPhase::unsigned_pre_dispatch_checks(&solution));
				assert_ok!(MultiPhase::submit_unsigned(
					Origin::none(),
					Box::new(solution),
					witness
				));
				assert_eq!(MultiPhase::queued_solution().unwrap().score[0], 10);

				// trial 1: a solution who's score is only 2, i.e. 20% better in the first element.
				let result = ElectionResult {
					winners: vec![(10, 12)],
					assignments: vec![
						Assignment { who: 10, distribution: vec![(10, PerU16::one())] },
						Assignment {
							who: 7,
							// note: this percent doesn't even matter, in solution it is 100%.
							distribution: vec![(10, PerU16::one())],
						},
					],
				};
				let (solution, _) = MultiPhase::prepare_election_result(result).unwrap();
				// 12 is not 50% more than 10
				assert_eq!(solution.score[0], 12);
				assert_noop!(
					MultiPhase::unsigned_pre_dispatch_checks(&solution),
					Error::<Runtime>::PreDispatchWeakSubmission,
				);
				// submitting this will actually panic.

				// trial 2: a solution who's score is only 7, i.e. 70% better in the first element.
				let result = ElectionResult {
					winners: vec![(10, 12)],
					assignments: vec![
						Assignment { who: 10, distribution: vec![(10, PerU16::one())] },
						Assignment { who: 7, distribution: vec![(10, PerU16::one())] },
						Assignment {
							who: 8,
							// note: this percent doesn't even matter, in solution it is 100%.
							distribution: vec![(10, PerU16::one())],
						},
					],
				};
				let (solution, witness) = MultiPhase::prepare_election_result(result).unwrap();
				assert_eq!(solution.score[0], 17);

				// and it is fine
				assert_ok!(MultiPhase::unsigned_pre_dispatch_checks(&solution));
				assert_ok!(MultiPhase::submit_unsigned(
					Origin::none(),
					Box::new(solution),
					witness
				));
			})
	}

	#[test]
	fn ocw_lock_prevents_frequent_execution() {
		let (mut ext, _) = ExtBuilder::default().build_offchainify(0);
		ext.execute_with(|| {
			let offchain_repeat = <Runtime as Config>::OffchainRepeat::get();

			roll_to(25);
			assert!(MultiPhase::current_phase().is_unsigned());

			// first execution -- okay.
			assert!(MultiPhase::ensure_offchain_repeat_frequency(25).is_ok());

			// next block: rejected.
			assert_noop!(
				MultiPhase::ensure_offchain_repeat_frequency(26),
				MinerError::Lock("recently executed.")
			);

			// allowed after `OFFCHAIN_REPEAT`
			assert!(
				MultiPhase::ensure_offchain_repeat_frequency((26 + offchain_repeat).into()).is_ok()
			);

			// a fork like situation: re-execute last 3.
			assert!(MultiPhase::ensure_offchain_repeat_frequency(
				(26 + offchain_repeat - 3).into()
			)
			.is_err());
			assert!(MultiPhase::ensure_offchain_repeat_frequency(
				(26 + offchain_repeat - 2).into()
			)
			.is_err());
			assert!(MultiPhase::ensure_offchain_repeat_frequency(
				(26 + offchain_repeat - 1).into()
			)
			.is_err());
		})
	}

	#[test]
	fn ocw_lock_released_after_successful_execution() {
		// first, ensure that a successful execution releases the lock
		let (mut ext, pool) = ExtBuilder::default().build_offchainify(0);
		ext.execute_with(|| {
			let guard = StorageValueRef::persistent(&OFFCHAIN_LOCK);
			let last_block = StorageValueRef::persistent(OFFCHAIN_LAST_BLOCK);

			roll_to(25);
			assert!(MultiPhase::current_phase().is_unsigned());

			// initially, the lock is not set.
			assert!(guard.get::<bool>().unwrap().is_none());

			// a successful a-z execution.
			MultiPhase::offchain_worker(25);
			assert_eq!(pool.read().transactions.len(), 1);

			// afterwards, the lock is not set either..
			assert!(guard.get::<bool>().unwrap().is_none());
			assert_eq!(last_block.get::<BlockNumber>().unwrap(), Some(25));
		});
	}

	#[test]
	fn ocw_lock_prevents_overlapping_execution() {
		// ensure that if the guard is in hold, a new execution is not allowed.
		let (mut ext, pool) = ExtBuilder::default().build_offchainify(0);
		ext.execute_with(|| {
			roll_to(25);
			assert!(MultiPhase::current_phase().is_unsigned());

			// artificially set the value, as if another thread is mid-way.
			let mut lock = StorageLock::<BlockAndTime<System>>::with_block_deadline(
				OFFCHAIN_LOCK,
				UnsignedPhase::get().saturated_into(),
			);
			let guard = lock.lock();

			// nothing submitted.
			MultiPhase::offchain_worker(25);
			assert_eq!(pool.read().transactions.len(), 0);
			MultiPhase::offchain_worker(26);
			assert_eq!(pool.read().transactions.len(), 0);

			drop(guard);

			// 🎉 !
			MultiPhase::offchain_worker(25);
			assert_eq!(pool.read().transactions.len(), 1);
		});
	}

	#[test]
	fn ocw_only_runs_when_unsigned_open_now() {
		let (mut ext, pool) = ExtBuilder::default().build_offchainify(0);
		ext.execute_with(|| {
			roll_to(25);
			assert_eq!(MultiPhase::current_phase(), Phase::Unsigned((true, 25)));

			// we must clear the offchain storage to ensure the offchain execution check doesn't get
			// in the way.
			let mut storage = StorageValueRef::persistent(&OFFCHAIN_LAST_BLOCK);

			MultiPhase::offchain_worker(24);
			assert!(pool.read().transactions.len().is_zero());
			storage.clear();

			// creates, caches, submits without expecting previous cache value
			MultiPhase::offchain_worker(25);
			assert_eq!(pool.read().transactions.len(), 1);
			// assume that the tx has been processed
			pool.try_write().unwrap().transactions.clear();

			// locked, but also, has previously cached.
			MultiPhase::offchain_worker(26);
			assert!(pool.read().transactions.len().is_zero());
		})
	}

	#[test]
	fn ocw_clears_cache_after_election() {
		let (mut ext, _pool) = ExtBuilder::default().build_offchainify(0);
		ext.execute_with(|| {
			roll_to(25);
			assert_eq!(MultiPhase::current_phase(), Phase::Unsigned((true, 25)));

			// we must clear the offchain storage to ensure the offchain execution check doesn't get
			// in the way.
			let mut storage = StorageValueRef::persistent(&OFFCHAIN_LAST_BLOCK);
			storage.clear();

			assert!(
				!ocw_solution_exists::<Runtime>(),
				"no solution should be present before we mine one",
			);

			// creates and cache a solution
			MultiPhase::offchain_worker(25);
			assert!(
				ocw_solution_exists::<Runtime>(),
				"a solution must be cached after running the worker",
			);

			// after an election, the solution must be cleared
			// we don't actually care about the result of the election
			roll_to(26);
			let _ = MultiPhase::do_elect();
			MultiPhase::offchain_worker(26);
			assert!(!ocw_solution_exists::<Runtime>(), "elections must clear the ocw cache");
		})
	}

	#[test]
	fn ocw_resubmits_after_offchain_repeat() {
		let (mut ext, pool) = ExtBuilder::default().build_offchainify(0);
		ext.execute_with(|| {
			const BLOCK: u64 = 25;
			let block_plus = |delta: i32| ((BLOCK as i32) + delta) as u64;
			let offchain_repeat = <Runtime as Config>::OffchainRepeat::get();

			roll_to(BLOCK);
			assert_eq!(MultiPhase::current_phase(), Phase::Unsigned((true, BLOCK)));

			// we must clear the offchain storage to ensure the offchain execution check doesn't get
			// in the way.
			let mut storage = StorageValueRef::persistent(&OFFCHAIN_LAST_BLOCK);

			MultiPhase::offchain_worker(block_plus(-1));
			assert!(pool.read().transactions.len().is_zero());
			storage.clear();

			// creates, caches, submits without expecting previous cache value
			MultiPhase::offchain_worker(BLOCK);
			assert_eq!(pool.read().transactions.len(), 1);
			let tx_cache = pool.read().transactions[0].clone();
			// assume that the tx has been processed
			pool.try_write().unwrap().transactions.clear();

			// attempts to resubmit the tx after the threshold has expired
			// note that we have to add 1: the semantics forbid resubmission at
			// BLOCK + offchain_repeat
			MultiPhase::offchain_worker(block_plus(1 + offchain_repeat as i32));
			assert_eq!(pool.read().transactions.len(), 1);

			// resubmitted tx is identical to first submission
			let tx = &pool.read().transactions[0];
			assert_eq!(&tx_cache, tx);
		})
	}

	#[test]
	fn ocw_regenerates_and_resubmits_after_offchain_repeat() {
		let (mut ext, pool) = ExtBuilder::default().build_offchainify(0);
		ext.execute_with(|| {
			const BLOCK: u64 = 25;
			let block_plus = |delta: i32| ((BLOCK as i32) + delta) as u64;
			let offchain_repeat = <Runtime as Config>::OffchainRepeat::get();

			roll_to(BLOCK);
			assert_eq!(MultiPhase::current_phase(), Phase::Unsigned((true, BLOCK)));

			// we must clear the offchain storage to ensure the offchain execution check doesn't get
			// in the way.
			let mut storage = StorageValueRef::persistent(&OFFCHAIN_LAST_BLOCK);

			MultiPhase::offchain_worker(block_plus(-1));
			assert!(pool.read().transactions.len().is_zero());
			storage.clear();

			// creates, caches, submits without expecting previous cache value
			MultiPhase::offchain_worker(BLOCK);
			assert_eq!(pool.read().transactions.len(), 1);
			let tx_cache = pool.read().transactions[0].clone();
			// assume that the tx has been processed
			pool.try_write().unwrap().transactions.clear();

			// remove the cached submitted tx
			// this ensures that when the resubmit window rolls around, we're ready to regenerate
			// from scratch if necessary
			let mut call_cache = StorageValueRef::persistent(&OFFCHAIN_CACHED_CALL);
			assert!(matches!(call_cache.get::<Call<Runtime>>(), Ok(Some(_call))));
			call_cache.clear();

			// attempts to resubmit the tx after the threshold has expired
			// note that we have to add 1: the semantics forbid resubmission at
			// BLOCK + offchain_repeat
			MultiPhase::offchain_worker(block_plus(1 + offchain_repeat as i32));
			assert_eq!(pool.read().transactions.len(), 1);

			// resubmitted tx is identical to first submission
			let tx = &pool.read().transactions[0];
			assert_eq!(&tx_cache, tx);
		})
	}

	#[test]
	fn ocw_can_submit_to_pool() {
		let (mut ext, pool) = ExtBuilder::default().build_offchainify(0);
		ext.execute_with(|| {
			roll_to_with_ocw(25);
			assert_eq!(MultiPhase::current_phase(), Phase::Unsigned((true, 25)));
			// OCW must have submitted now

			let encoded = pool.read().transactions[0].clone();
			let extrinsic: Extrinsic = Decode::decode(&mut &*encoded).unwrap();
			let call = extrinsic.call;
			assert!(matches!(call, OuterCall::MultiPhase(Call::submit_unsigned(..))));
		})
	}

	#[test]
	fn ocw_solution_must_have_correct_round() {
		let (mut ext, pool) = ExtBuilder::default().build_offchainify(0);
		ext.execute_with(|| {
			roll_to_with_ocw(25);
			assert_eq!(MultiPhase::current_phase(), Phase::Unsigned((true, 25)));
			// OCW must have submitted now
			// now, before we check the call, update the round
			<crate::Round<Runtime>>::mutate(|round| *round += 1);

			let encoded = pool.read().transactions[0].clone();
			let extrinsic = Extrinsic::decode(&mut &*encoded).unwrap();
			let call = match extrinsic.call {
				OuterCall::MultiPhase(call @ Call::submit_unsigned(..)) => call,
				_ => panic!("bad call: unexpected submission"),
			};

			// Custom(7) maps to PreDispatchChecksFailed
			let pre_dispatch_check_error =
				TransactionValidityError::Invalid(InvalidTransaction::Custom(7));
			assert_eq!(
				<MultiPhase as ValidateUnsigned>::validate_unsigned(
					TransactionSource::Local,
					&call,
				)
				.unwrap_err(),
				pre_dispatch_check_error,
			);
			assert_eq!(
				<MultiPhase as ValidateUnsigned>::pre_dispatch(&call).unwrap_err(),
				pre_dispatch_check_error,
			);
		})
	}

	#[test]
	fn trim_assignments_length_does_not_modify_when_short_enough() {
		ExtBuilder::default().build_and_execute(|| {
			roll_to(25);

			// given
			let TrimHelpers { mut assignments, encoded_size_of, .. } = trim_helpers();
			let solution = SolutionOf::<Runtime>::try_from(assignments.as_slice()).unwrap();
			let encoded_len = solution.encoded_size() as u32;
			let solution_clone = solution.clone();

			// when
			MultiPhase::trim_assignments_length(encoded_len, &mut assignments, encoded_size_of)
				.unwrap();

			// then
			let solution = SolutionOf::<Runtime>::try_from(assignments.as_slice()).unwrap();
			assert_eq!(solution, solution_clone);
		});
	}

	#[test]
	fn trim_assignments_length_modifies_when_too_long() {
		ExtBuilder::default().build().execute_with(|| {
			roll_to(25);

			// given
			let TrimHelpers { mut assignments, encoded_size_of, .. } = trim_helpers();
			let solution = SolutionOf::<Runtime>::try_from(assignments.as_slice()).unwrap();
			let encoded_len = solution.encoded_size();
			let solution_clone = solution.clone();

			// when
			MultiPhase::trim_assignments_length(
				encoded_len as u32 - 1,
				&mut assignments,
				encoded_size_of,
			)
			.unwrap();

			// then
			let solution = SolutionOf::<Runtime>::try_from(assignments.as_slice()).unwrap();
			assert_ne!(solution, solution_clone);
			assert!(solution.encoded_size() < encoded_len);
		});
	}

	#[test]
	fn trim_assignments_length_trims_lowest_stake() {
		ExtBuilder::default().build().execute_with(|| {
			roll_to(25);

			// given
			let TrimHelpers { voters, mut assignments, encoded_size_of, voter_index } =
				trim_helpers();
			let solution = SolutionOf::<Runtime>::try_from(assignments.as_slice()).unwrap();
			let encoded_len = solution.encoded_size() as u32;
			let count = assignments.len();
			let min_stake_voter = voters
				.iter()
				.map(|(id, weight, _)| (weight, id))
				.min()
				.and_then(|(_, id)| voter_index(id))
				.unwrap();

			// when
			MultiPhase::trim_assignments_length(encoded_len - 1, &mut assignments, encoded_size_of)
				.unwrap();

			// then
			assert_eq!(assignments.len(), count - 1, "we must have removed exactly one assignment");
			assert!(
				assignments.iter().all(|IndexAssignment { who, .. }| *who != min_stake_voter),
				"min_stake_voter must no longer be in the set of voters",
			);
		});
	}

	#[test]
	fn trim_assignments_length_wont_panic() {
		// we shan't panic if assignments are initially empty.
		ExtBuilder::default().build_and_execute(|| {
			let encoded_size_of = Box::new(|assignments: &[IndexAssignmentOf<Runtime>]| {
				SolutionOf::<Runtime>::try_from(assignments).map(|solution| solution.encoded_size())
			});

			let mut assignments = vec![];

			// since we have 16 fields, we need to store the length fields of 16 vecs, thus 16 bytes
			// minimum.
			let min_solution_size = encoded_size_of(&assignments).unwrap();
			assert_eq!(min_solution_size, SolutionOf::<Runtime>::LIMIT);

			// all of this should not panic.
			MultiPhase::trim_assignments_length(0, &mut assignments, encoded_size_of.clone())
				.unwrap();
			MultiPhase::trim_assignments_length(1, &mut assignments, encoded_size_of.clone())
				.unwrap();
			MultiPhase::trim_assignments_length(
				min_solution_size as u32,
				&mut assignments,
				encoded_size_of,
			)
			.unwrap();
		});

		// or when we trim it to zero.
		ExtBuilder::default().build_and_execute(|| {
			// we need snapshot for `trim_helpers` to work.
			roll_to(25);
			let TrimHelpers { mut assignments, encoded_size_of, .. } = trim_helpers();
			assert!(assignments.len() > 0);

			// trim to min solution size.
			let min_solution_size = SolutionOf::<Runtime>::LIMIT as u32;
			MultiPhase::trim_assignments_length(
				min_solution_size,
				&mut assignments,
				encoded_size_of,
			)
			.unwrap();
			assert_eq!(assignments.len(), 0);
		});
	}

	// all the other solution-generation functions end up delegating to `mine_solution`, so if we
	// demonstrate that `mine_solution` solutions are all trimmed to an acceptable length, then
	// we know that higher-level functions will all also have short-enough solutions.
	#[test]
	fn mine_solution_solutions_always_within_acceptable_length() {
		ExtBuilder::default().build_and_execute(|| {
			roll_to(25);

			// how long would the default solution be?
			let solution = MultiPhase::mine_solution(0).unwrap();
			let max_length = <Runtime as Config>::MinerMaxLength::get();
			let solution_size = solution.0.solution.encoded_size();
			assert!(solution_size <= max_length as usize);

			// now set the max size to less than the actual size and regenerate
			<Runtime as Config>::MinerMaxLength::set(solution_size as u32 - 1);
			let solution = MultiPhase::mine_solution(0).unwrap();
			let max_length = <Runtime as Config>::MinerMaxLength::get();
			let solution_size = solution.0.solution.encoded_size();
			assert!(solution_size <= max_length as usize);
		});
	}
}