1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
// This file is part of Substrate.

// Copyright (C) 2020-2021 Parity Technologies (UK) Ltd.
// SPDX-License-Identifier: Apache-2.0

// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// 	http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

//! Implementation of the PhragMMS method.
//!
//! The naming comes from the fact that this method is highly inspired by Phragmen's method, yet it
//! _also_ provides a constant factor approximation of the Maximin problem, similar to that of the
//! MMS algorithm.

use crate::{
	balance, setup_inputs, CandidatePtr, ElectionResult, ExtendedBalance, IdentifierT, PerThing128,
	VoteWeight, Voter,
};
use sp_arithmetic::{traits::Bounded, PerThing, Rational128};
use sp_std::{prelude::*, rc::Rc};

/// Execute the phragmms method.
///
/// This can be used interchangeably with [`seq-phragmen`] and offers a similar API, namely:
///
/// - The resulting edge weight distribution is normalized (thus, safe to use for submission).
/// - The accuracy can be configured via the generic type `P`.
/// - The algorithm is a _best-effort_ to elect `to_elect`. If less candidates are provided, less
///   winners are returned, without an error.
///
/// This can only fail of the normalization fails. This can happen if for any of the resulting
/// assignments, `assignment.distribution.map(|p| p.deconstruct()).sum()` fails to fit inside
/// `UpperOf<P>`. A user of this crate may statically assert that this can never happen and safely
/// `expect` this to return `Ok`.
pub fn phragmms<AccountId: IdentifierT, P: PerThing128>(
	to_elect: usize,
	initial_candidates: Vec<AccountId>,
	initial_voters: Vec<(AccountId, VoteWeight, Vec<AccountId>)>,
	balancing_config: Option<(usize, ExtendedBalance)>,
) -> Result<ElectionResult<AccountId, P>, &'static str> {
	let (candidates, mut voters) = setup_inputs(initial_candidates, initial_voters);

	let mut winners = vec![];
	for round in 0..to_elect {
		if let Some(round_winner) = calculate_max_score::<AccountId, P>(&candidates, &voters) {
			apply_elected::<AccountId>(&mut voters, Rc::clone(&round_winner));

			round_winner.borrow_mut().round = round;
			round_winner.borrow_mut().elected = true;
			winners.push(round_winner);

			if let Some((iterations, tolerance)) = balancing_config {
				balance(&mut voters, iterations, tolerance);
			}
		} else {
			break
		}
	}

	let mut assignments =
		voters.into_iter().filter_map(|v| v.into_assignment()).collect::<Vec<_>>();
	let _ = assignments.iter_mut().map(|a| a.try_normalize()).collect::<Result<(), _>>()?;
	let winners = winners
		.into_iter()
		.map(|w_ptr| (w_ptr.borrow().who.clone(), w_ptr.borrow().backed_stake))
		.collect();

	Ok(ElectionResult { winners, assignments })
}

/// Find the candidate that can yield the maximum score for this round.
///
/// Returns a new `Some(CandidatePtr)` to the winner candidate. The score of the candidate is
/// updated and can be read from the returned pointer.
///
/// If no winner can be determined (i.e. everyone is already elected), then `None` is returned.
///
/// This is an internal part of the [`phragmms`].
pub(crate) fn calculate_max_score<AccountId: IdentifierT, P: PerThing>(
	candidates: &[CandidatePtr<AccountId>],
	voters: &[Voter<AccountId>],
) -> Option<CandidatePtr<AccountId>> {
	for c_ptr in candidates.iter() {
		let mut candidate = c_ptr.borrow_mut();
		if !candidate.elected {
			candidate.score = Rational128::from(1, P::ACCURACY.into());
		}
	}

	for voter in voters.iter() {
		let mut denominator_contribution: ExtendedBalance = 0;

		// gather contribution from all elected edges.
		for edge in voter.edges.iter() {
			let edge_candidate = edge.candidate.borrow();
			if edge_candidate.elected {
				let edge_contribution: ExtendedBalance =
					P::from_rational(edge.weight, edge_candidate.backed_stake).deconstruct().into();
				denominator_contribution += edge_contribution;
			}
		}

		// distribute to all _unelected_ edges.
		for edge in voter.edges.iter() {
			let mut edge_candidate = edge.candidate.borrow_mut();
			if !edge_candidate.elected {
				let prev_d = edge_candidate.score.d();
				edge_candidate.score = Rational128::from(1, denominator_contribution + prev_d);
			}
		}
	}

	// finalise the score value, and find the best.
	let mut best_score = Rational128::zero();
	let mut best_candidate = None;

	for c_ptr in candidates.iter() {
		let mut candidate = c_ptr.borrow_mut();
		if candidate.approval_stake > 0 {
			// finalise the score value.
			let score_d = candidate.score.d();
			let one: ExtendedBalance = P::ACCURACY.into();
			// Note: the accuracy here is questionable.
			// First, let's consider what will happen if this saturates. In this case, two very
			// whale-like validators will be effectively the same and their score will be equal.
			// This is, more or less fine if the threshold of saturation is high and only a small
			// subset or ever likely to become saturated. Once saturated, the score of these whales
			// are effectively the same.
			// Let's consider when this will happen. The approval stake of a target is the sum of
			// stake of all the voter who have backed this target. Given the fact that the total
			// issuance of a sane chain will fit in u128, it is safe to also assume that the
			// approval stake will, since it is a subset of the total issuance at most.
			// Finally, the only chance of overflow is multiplication by `one`. This highly depends
			// on the `P` generic argument. With a PerBill and a 12 decimal token the maximum value
			// that `candidate.approval_stake` can have is:
			// (2 ** 128 - 1) / 10**9 / 10**12  = 340,282,366,920,938,463
			// Assuming that each target will have 200,000 voters, then each voter's stake can be
			// roughly:
			// (2 ** 128 - 1) / 10**9 / 10**12 / 200000 = 1,701,411,834,604
			//
			// It is worth noting that these value would be _very_ different if one were to use
			// `PerQuintill` as `P`. For now, we prefer the performance of using `Rational128` here.
			// For the future, a properly benchmarked pull request can prove that using
			// `RationalInfinite` as the score type does not introduce significant overhead. Then we
			// can switch the score type to `RationalInfinite` and ensure compatibility with any
			// crazy token scale.
			let score_n = candidate
				.approval_stake
				.checked_mul(one)
				.unwrap_or_else(|| Bounded::max_value());
			candidate.score = Rational128::from(score_n, score_d);

			// check if we have a new winner.
			if !candidate.elected && candidate.score > best_score {
				best_score = candidate.score;
				best_candidate = Some(Rc::clone(&c_ptr));
			}
		} else {
			candidate.score = Rational128::zero();
		}
	}

	best_candidate
}

/// Update the weights of `voters` given that `elected_ptr` has been elected in the previous round.
///
/// Updates `voters` in place.
///
/// This is an internal part of the [`phragmms`] and should be called after
/// [`calculate_max_score`].
pub(crate) fn apply_elected<AccountId: IdentifierT>(
	voters: &mut Vec<Voter<AccountId>>,
	elected_ptr: CandidatePtr<AccountId>,
) {
	let elected_who = elected_ptr.borrow().who.clone();
	let cutoff = elected_ptr
		.borrow()
		.score
		.to_den(1)
		.expect("(n / d) < u128::MAX and (n' / 1) == (n / d), thus n' < u128::MAX'; qed.")
		.n();

	let mut elected_backed_stake = elected_ptr.borrow().backed_stake;
	for voter in voters {
		if let Some(new_edge_index) = voter.edges.iter().position(|e| e.who == elected_who) {
			let used_budget: ExtendedBalance = voter.edges.iter().map(|e| e.weight).sum();

			let mut new_edge_weight = voter.budget.saturating_sub(used_budget);
			elected_backed_stake = elected_backed_stake.saturating_add(new_edge_weight);

			// Iterate over all other edges.
			for (_, edge) in
				voter.edges.iter_mut().enumerate().filter(|(edge_index, edge_inner)| {
					*edge_index != new_edge_index && edge_inner.weight > 0
				}) {
				let mut edge_candidate = edge.candidate.borrow_mut();
				if edge_candidate.backed_stake > cutoff {
					let stake_to_take =
						edge.weight.saturating_mul(cutoff) / edge_candidate.backed_stake.max(1);

					// subtract this amount from this edge.
					edge.weight = edge.weight.saturating_sub(stake_to_take);
					edge_candidate.backed_stake =
						edge_candidate.backed_stake.saturating_sub(stake_to_take);

					// inject it into the outer loop's edge.
					elected_backed_stake = elected_backed_stake.saturating_add(stake_to_take);
					new_edge_weight = new_edge_weight.saturating_add(stake_to_take);
				}
			}

			voter.edges[new_edge_index].weight = new_edge_weight;
		}
	}

	// final update.
	elected_ptr.borrow_mut().backed_stake = elected_backed_stake;
}

#[cfg(test)]
mod tests {
	use super::*;
	use crate::{Assignment, ElectionResult};
	use sp_runtime::{Perbill, Percent};
	use sp_std::rc::Rc;

	#[test]
	fn basic_election_manual_works() {
		//! Manually run the internal steps of phragmms. In each round we select a new winner by
		//! `max_score`, then apply this change by `apply_elected`, and finally do a `balance`
		//! round.
		let candidates = vec![1, 2, 3];
		let voters = vec![(10, 10, vec![1, 2]), (20, 20, vec![1, 3]), (30, 30, vec![2, 3])];

		let (candidates, mut voters) = setup_inputs(candidates, voters);

		// Round 1
		let winner =
			calculate_max_score::<u32, Percent>(candidates.as_ref(), voters.as_ref()).unwrap();
		assert_eq!(winner.borrow().who, 3);
		assert_eq!(winner.borrow().score, 50u32.into());

		apply_elected(&mut voters, Rc::clone(&winner));
		assert_eq!(
			voters
				.iter()
				.find(|x| x.who == 30)
				.map(|v| (v.who, v.edges.iter().map(|e| (e.who, e.weight)).collect::<Vec<_>>()))
				.unwrap(),
			(30, vec![(2, 0), (3, 30)]),
		);
		assert_eq!(
			voters
				.iter()
				.find(|x| x.who == 20)
				.map(|v| (v.who, v.edges.iter().map(|e| (e.who, e.weight)).collect::<Vec<_>>()))
				.unwrap(),
			(20, vec![(1, 0), (3, 20)]),
		);

		// finish the round.
		winner.borrow_mut().elected = true;
		winner.borrow_mut().round = 0;
		drop(winner);

		// balancing makes no difference here but anyhow.
		balance(&mut voters, 10, 0);

		// round 2
		let winner =
			calculate_max_score::<u32, Percent>(candidates.as_ref(), voters.as_ref()).unwrap();
		assert_eq!(winner.borrow().who, 2);
		assert_eq!(winner.borrow().score, 25u32.into());

		apply_elected(&mut voters, Rc::clone(&winner));
		assert_eq!(
			voters
				.iter()
				.find(|x| x.who == 30)
				.map(|v| (v.who, v.edges.iter().map(|e| (e.who, e.weight)).collect::<Vec<_>>()))
				.unwrap(),
			(30, vec![(2, 15), (3, 15)]),
		);
		assert_eq!(
			voters
				.iter()
				.find(|x| x.who == 20)
				.map(|v| (v.who, v.edges.iter().map(|e| (e.who, e.weight)).collect::<Vec<_>>()))
				.unwrap(),
			(20, vec![(1, 0), (3, 20)]),
		);
		assert_eq!(
			voters
				.iter()
				.find(|x| x.who == 10)
				.map(|v| (v.who, v.edges.iter().map(|e| (e.who, e.weight)).collect::<Vec<_>>()))
				.unwrap(),
			(10, vec![(1, 0), (2, 10)]),
		);

		// finish the round.
		winner.borrow_mut().elected = true;
		winner.borrow_mut().round = 0;
		drop(winner);

		// balancing will improve stuff here.
		balance(&mut voters, 10, 0);

		assert_eq!(
			voters
				.iter()
				.find(|x| x.who == 30)
				.map(|v| (v.who, v.edges.iter().map(|e| (e.who, e.weight)).collect::<Vec<_>>()))
				.unwrap(),
			(30, vec![(2, 20), (3, 10)]),
		);
		assert_eq!(
			voters
				.iter()
				.find(|x| x.who == 20)
				.map(|v| (v.who, v.edges.iter().map(|e| (e.who, e.weight)).collect::<Vec<_>>()))
				.unwrap(),
			(20, vec![(1, 0), (3, 20)]),
		);
		assert_eq!(
			voters
				.iter()
				.find(|x| x.who == 10)
				.map(|v| (v.who, v.edges.iter().map(|e| (e.who, e.weight)).collect::<Vec<_>>()))
				.unwrap(),
			(10, vec![(1, 0), (2, 10)]),
		);
	}

	#[test]
	fn basic_election_works() {
		let candidates = vec![1, 2, 3];
		let voters = vec![(10, 10, vec![1, 2]), (20, 20, vec![1, 3]), (30, 30, vec![2, 3])];

		let ElectionResult { winners, assignments } =
			phragmms::<_, Perbill>(2, candidates, voters, Some((2, 0))).unwrap();
		assert_eq!(winners, vec![(3, 30), (2, 30)]);
		assert_eq!(
			assignments,
			vec![
				Assignment { who: 10u64, distribution: vec![(2, Perbill::one())] },
				Assignment { who: 20, distribution: vec![(3, Perbill::one())] },
				Assignment {
					who: 30,
					distribution: vec![
						(2, Perbill::from_parts(666666666)),
						(3, Perbill::from_parts(333333334)),
					],
				},
			]
		)
	}

	#[test]
	fn linear_voting_example_works() {
		let candidates = vec![11, 21, 31, 41, 51, 61, 71];
		let voters = vec![
			(2, 2000, vec![11]),
			(4, 1000, vec![11, 21]),
			(6, 1000, vec![21, 31]),
			(8, 1000, vec![31, 41]),
			(110, 1000, vec![41, 51]),
			(120, 1000, vec![51, 61]),
			(130, 1000, vec![61, 71]),
		];

		let ElectionResult { winners, assignments: _ } =
			phragmms::<_, Perbill>(4, candidates, voters, Some((2, 0))).unwrap();
		assert_eq!(winners, vec![(11, 3000), (31, 2000), (51, 1500), (61, 1500),]);
	}

	#[test]
	fn large_balance_wont_overflow() {
		let candidates = vec![1u32, 2, 3];
		let mut voters = (0..1000).map(|i| (10 + i, u64::MAX, vec![1, 2, 3])).collect::<Vec<_>>();

		// give a bit more to 1 and 3.
		voters.push((2, u64::MAX, vec![1, 3]));

		let ElectionResult { winners, assignments: _ } =
			phragmms::<_, Perbill>(2, candidates, voters, Some((2, 0))).unwrap();
		assert_eq!(winners.into_iter().map(|(w, _)| w).collect::<Vec<_>>(), vec![1u32, 3]);
	}
}