1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
// This file is part of Substrate.

// Copyright (C) 2020-2021 Parity Technologies (UK) Ltd.
// SPDX-License-Identifier: Apache-2.0

// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// 	http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

//! Merkle Mountain Range utilities.

/// MMR nodes & size -related utilities.
pub struct NodesUtils {
	no_of_leaves: u64,
}

impl NodesUtils {
	/// Create new instance of MMR nodes utilities for given number of leaves.
	pub fn new(no_of_leaves: u64) -> Self {
		Self { no_of_leaves }
	}

	/// Calculate number of peaks in the MMR.
	pub fn number_of_peaks(&self) -> u64 {
		self.number_of_leaves().count_ones() as u64
	}

	/// Return the number of leaves in the MMR.
	pub fn number_of_leaves(&self) -> u64 {
		self.no_of_leaves
	}

	/// Calculate the total size of MMR (number of nodes).
	pub fn size(&self) -> u64 {
		2 * self.no_of_leaves - self.number_of_peaks()
	}

	/// Calculate maximal depth of the MMR.
	pub fn depth(&self) -> u32 {
		if self.no_of_leaves == 0 {
			return 0
		}

		64 - self.no_of_leaves.next_power_of_two().leading_zeros()
	}
}

#[cfg(test)]
mod tests {
	use super::*;

	#[test]
	fn should_calculate_number_of_leaves_correctly() {
		assert_eq!(
			vec![0, 1, 2, 3, 4, 9, 15, 21]
				.into_iter()
				.map(|n| NodesUtils::new(n).depth())
				.collect::<Vec<_>>(),
			vec![0, 1, 2, 3, 3, 5, 5, 6]
		);
	}

	#[test]
	fn should_calculate_depth_correclty() {
		assert_eq!(
			vec![0, 1, 2, 3, 4, 9, 15, 21]
				.into_iter()
				.map(|n| NodesUtils::new(n).number_of_leaves())
				.collect::<Vec<_>>(),
			vec![0, 1, 2, 3, 4, 9, 15, 21]
		);
	}

	#[test]
	fn should_calculate_number_of_peaks_correctly() {
		assert_eq!(
			vec![0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 21]
				.into_iter()
				.map(|n| NodesUtils::new(n).number_of_peaks())
				.collect::<Vec<_>>(),
			vec![0, 1, 1, 2, 1, 2, 2, 3, 1, 2, 2, 3, 2, 3, 3, 4, 3]
		);
	}

	#[test]
	fn should_calculate_the_size_correctly() {
		let _ = env_logger::try_init();

		let leaves = vec![0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 21];
		let sizes = vec![0, 1, 3, 4, 7, 8, 10, 11, 15, 16, 18, 19, 22, 23, 25, 26, 39];
		assert_eq!(
			leaves
				.clone()
				.into_iter()
				.map(|n| NodesUtils::new(n).size())
				.collect::<Vec<_>>(),
			sizes.clone()
		);

		// size cross-check
		let mut actual_sizes = vec![];
		for s in &leaves[1..] {
			crate::tests::new_test_ext().execute_with(|| {
				let mut mmr = crate::mmr::Mmr::<
					crate::mmr::storage::RuntimeStorage,
					crate::mock::Test,
					_,
					_,
				>::new(0);
				for i in 0..*s {
					mmr.push(i);
				}
				actual_sizes.push(mmr.size());
			})
		}
		assert_eq!(sizes[1..], actual_sizes[..]);
	}
}