1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
// This file is part of Substrate.

// Copyright (C) 2020-2021 Parity Technologies (UK) Ltd.
// SPDX-License-Identifier: GPL-3.0-or-later WITH Classpath-exception-2.0

// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.

// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.

// You should have received a copy of the GNU General Public License
// along with this program. If not, see <https://www.gnu.org/licenses/>.

//! Defines data and logic needed for interaction with an WebAssembly instance of a substrate
//! runtime module.

use crate::{imports::Imports, util};

use sc_executor_common::{
	error::{Error, Result},
	runtime_blob,
	wasm_runtime::InvokeMethod,
};
use sp_wasm_interface::{Pointer, Value, WordSize};
use std::{marker, slice};
use wasmtime::{Extern, Func, Global, Instance, Memory, Module, Store, Table, Val};

/// Invoked entrypoint format.
pub enum EntryPointType {
	/// Direct call.
	///
	/// Call is made by providing only payload reference and length.
	Direct { entrypoint: wasmtime::TypedFunc<(u32, u32), u64> },
	/// Indirect call.
	///
	/// Call is made by providing payload reference and length, and extra argument
	/// for advanced routing.
	Wrapped {
		/// The extra argument passed to the runtime. It is typically a wasm function pointer.
		func: u32,
		dispatcher: wasmtime::TypedFunc<(u32, u32, u32), u64>,
	},
}

/// Wasm blob entry point.
pub struct EntryPoint {
	call_type: EntryPointType,
}

impl EntryPoint {
	/// Call this entry point.
	pub fn call(&self, data_ptr: Pointer<u8>, data_len: WordSize) -> Result<u64> {
		let data_ptr = u32::from(data_ptr);
		let data_len = u32::from(data_len);

		fn handle_trap(err: wasmtime::Trap) -> Error {
			Error::from(format!("Wasm execution trapped: {}", err))
		}

		match self.call_type {
			EntryPointType::Direct { ref entrypoint } =>
				entrypoint.call((data_ptr, data_len)).map_err(handle_trap),
			EntryPointType::Wrapped { func, ref dispatcher } =>
				dispatcher.call((func, data_ptr, data_len)).map_err(handle_trap),
		}
	}

	pub fn direct(func: wasmtime::Func) -> std::result::Result<Self, &'static str> {
		let entrypoint = func
			.typed::<(u32, u32), u64>()
			.map_err(|_| "Invalid signature for direct entry point")?
			.clone();
		Ok(Self { call_type: EntryPointType::Direct { entrypoint } })
	}

	pub fn wrapped(
		dispatcher: wasmtime::Func,
		func: u32,
	) -> std::result::Result<Self, &'static str> {
		let dispatcher = dispatcher
			.typed::<(u32, u32, u32), u64>()
			.map_err(|_| "Invalid signature for wrapped entry point")?
			.clone();
		Ok(Self { call_type: EntryPointType::Wrapped { func, dispatcher } })
	}
}

/// Wrap the given WebAssembly Instance of a wasm module with Substrate-runtime.
///
/// This struct is a handy wrapper around a wasmtime `Instance` that provides substrate specific
/// routines.
pub struct InstanceWrapper {
	instance: Instance,
	// The memory instance of the `instance`.
	//
	// It is important to make sure that we don't make any copies of this to make it easier to proof
	// See `memory_as_slice` and `memory_as_slice_mut`.
	memory: Memory,
	table: Option<Table>,
	// Make this struct explicitly !Send & !Sync.
	_not_send_nor_sync: marker::PhantomData<*const ()>,
}

fn extern_memory(extern_: &Extern) -> Option<&Memory> {
	match extern_ {
		Extern::Memory(mem) => Some(mem),
		_ => None,
	}
}

fn extern_global(extern_: &Extern) -> Option<&Global> {
	match extern_ {
		Extern::Global(glob) => Some(glob),
		_ => None,
	}
}

fn extern_table(extern_: &Extern) -> Option<&Table> {
	match extern_ {
		Extern::Table(table) => Some(table),
		_ => None,
	}
}

fn extern_func(extern_: &Extern) -> Option<&Func> {
	match extern_ {
		Extern::Func(func) => Some(func),
		_ => None,
	}
}

impl InstanceWrapper {
	/// Create a new instance wrapper from the given wasm module.
	pub fn new(store: &Store, module: &Module, imports: &Imports, heap_pages: u32) -> Result<Self> {
		let instance = Instance::new(store, module, &imports.externs)
			.map_err(|e| Error::from(format!("cannot instantiate: {}", e)))?;

		let memory = match imports.memory_import_index {
			Some(memory_idx) => extern_memory(&imports.externs[memory_idx])
				.expect("only memory can be at the `memory_idx`; qed")
				.clone(),
			None => {
				let memory = get_linear_memory(&instance)?;
				if !memory.grow(heap_pages).is_ok() {
					return Err("failed top increase the linear memory size".into())
				}
				memory
			},
		};

		Ok(Self {
			table: get_table(&instance),
			instance,
			memory,
			_not_send_nor_sync: marker::PhantomData,
		})
	}

	/// Resolves a substrate entrypoint by the given name.
	///
	/// An entrypoint must have a signature `(i32, i32) -> i64`, otherwise this function will return
	/// an error.
	pub fn resolve_entrypoint(&self, method: InvokeMethod) -> Result<EntryPoint> {
		Ok(match method {
			InvokeMethod::Export(method) => {
				// Resolve the requested method and verify that it has a proper signature.
				let export = self.instance.get_export(method).ok_or_else(|| {
					Error::from(format!("Exported method {} is not found", method))
				})?;
				let func = extern_func(&export)
					.ok_or_else(|| Error::from(format!("Export {} is not a function", method)))?
					.clone();
				EntryPoint::direct(func).map_err(|_| {
					Error::from(format!("Exported function '{}' has invalid signature.", method))
				})?
			},
			InvokeMethod::Table(func_ref) => {
				let table =
					self.instance.get_table("__indirect_function_table").ok_or(Error::NoTable)?;
				let val = table.get(func_ref).ok_or(Error::NoTableEntryWithIndex(func_ref))?;
				let func = val
					.funcref()
					.ok_or(Error::TableElementIsNotAFunction(func_ref))?
					.ok_or(Error::FunctionRefIsNull(func_ref))?
					.clone();

				EntryPoint::direct(func).map_err(|_| {
					Error::from(format!(
						"Function @{} in exported table has invalid signature for direct call.",
						func_ref,
					))
				})?
			},
			InvokeMethod::TableWithWrapper { dispatcher_ref, func } => {
				let table =
					self.instance.get_table("__indirect_function_table").ok_or(Error::NoTable)?;
				let val = table
					.get(dispatcher_ref)
					.ok_or(Error::NoTableEntryWithIndex(dispatcher_ref))?;
				let dispatcher = val
					.funcref()
					.ok_or(Error::TableElementIsNotAFunction(dispatcher_ref))?
					.ok_or(Error::FunctionRefIsNull(dispatcher_ref))?
					.clone();

				EntryPoint::wrapped(dispatcher, func).map_err(|_| {
					Error::from(format!(
						"Function @{} in exported table has invalid signature for wrapped call.",
						dispatcher_ref,
					))
				})?
			},
		})
	}

	/// Returns an indirect function table of this instance.
	pub fn table(&self) -> Option<&Table> {
		self.table.as_ref()
	}

	/// Returns the byte size of the linear memory instance attached to this instance.
	pub fn memory_size(&self) -> u32 {
		self.memory.data_size() as u32
	}

	/// Reads `__heap_base: i32` global variable and returns it.
	///
	/// If it doesn't exist, not a global or of not i32 type returns an error.
	pub fn extract_heap_base(&self) -> Result<u32> {
		let heap_base_export = self
			.instance
			.get_export("__heap_base")
			.ok_or_else(|| Error::from("__heap_base is not found"))?;

		let heap_base_global = extern_global(&heap_base_export)
			.ok_or_else(|| Error::from("__heap_base is not a global"))?;

		let heap_base = heap_base_global
			.get()
			.i32()
			.ok_or_else(|| Error::from("__heap_base is not a i32"))?;

		Ok(heap_base as u32)
	}

	/// Get the value from a global with the given `name`.
	pub fn get_global_val(&self, name: &str) -> Result<Option<Value>> {
		let global = match self.instance.get_export(name) {
			Some(global) => global,
			None => return Ok(None),
		};

		let global = extern_global(&global).ok_or_else(|| format!("`{}` is not a global", name))?;

		match global.get() {
			Val::I32(val) => Ok(Some(Value::I32(val))),
			Val::I64(val) => Ok(Some(Value::I64(val))),
			Val::F32(val) => Ok(Some(Value::F32(val))),
			Val::F64(val) => Ok(Some(Value::F64(val))),
			_ => Err("Unknown value type".into()),
		}
	}
}

/// Extract linear memory instance from the given instance.
fn get_linear_memory(instance: &Instance) -> Result<Memory> {
	let memory_export = instance
		.get_export("memory")
		.ok_or_else(|| Error::from("memory is not exported under `memory` name"))?;

	let memory = extern_memory(&memory_export)
		.ok_or_else(|| Error::from("the `memory` export should have memory type"))?
		.clone();

	Ok(memory)
}

/// Extract the table from the given instance if any.
fn get_table(instance: &Instance) -> Option<Table> {
	instance
		.get_export("__indirect_function_table")
		.as_ref()
		.and_then(extern_table)
		.cloned()
}

/// Functions related to memory.
impl InstanceWrapper {
	/// Read data from a slice of memory into a destination buffer.
	///
	/// Returns an error if the read would go out of the memory bounds.
	pub fn read_memory_into(&self, address: Pointer<u8>, dest: &mut [u8]) -> Result<()> {
		unsafe {
			// This should be safe since we don't grow up memory while caching this reference and
			// we give up the reference before returning from this function.
			let memory = self.memory_as_slice();

			let range = util::checked_range(address.into(), dest.len(), memory.len())
				.ok_or_else(|| Error::Other("memory read is out of bounds".into()))?;
			dest.copy_from_slice(&memory[range]);
			Ok(())
		}
	}

	/// Write data to a slice of memory.
	///
	/// Returns an error if the write would go out of the memory bounds.
	pub fn write_memory_from(&self, address: Pointer<u8>, data: &[u8]) -> Result<()> {
		unsafe {
			// This should be safe since we don't grow up memory while caching this reference and
			// we give up the reference before returning from this function.
			let memory = self.memory_as_slice_mut();

			let range = util::checked_range(address.into(), data.len(), memory.len())
				.ok_or_else(|| Error::Other("memory write is out of bounds".into()))?;
			memory[range].copy_from_slice(data);
			Ok(())
		}
	}

	/// Allocate some memory of the given size. Returns pointer to the allocated memory region.
	///
	/// Returns `Err` in case memory cannot be allocated. Refer to the allocator documentation
	/// to get more details.
	pub fn allocate(
		&self,
		allocator: &mut sc_allocator::FreeingBumpHeapAllocator,
		size: WordSize,
	) -> Result<Pointer<u8>> {
		unsafe {
			// This should be safe since we don't grow up memory while caching this reference and
			// we give up the reference before returning from this function.
			let memory = self.memory_as_slice_mut();

			allocator.allocate(memory, size).map_err(Into::into)
		}
	}

	/// Deallocate the memory pointed by the given pointer.
	///
	/// Returns `Err` in case the given memory region cannot be deallocated.
	pub fn deallocate(
		&self,
		allocator: &mut sc_allocator::FreeingBumpHeapAllocator,
		ptr: Pointer<u8>,
	) -> Result<()> {
		unsafe {
			// This should be safe since we don't grow up memory while caching this reference and
			// we give up the reference before returning from this function.
			let memory = self.memory_as_slice_mut();

			allocator.deallocate(memory, ptr).map_err(Into::into)
		}
	}

	/// Returns linear memory of the wasm instance as a slice.
	///
	/// # Safety
	///
	/// Wasmtime doesn't provide comprehensive documentation about the exact behavior of the data
	/// pointer. If a dynamic style heap is used the base pointer of the heap can change. Since
	/// growing, we cannot guarantee the lifetime of the returned slice reference.
	unsafe fn memory_as_slice(&self) -> &[u8] {
		let ptr = self.memory.data_ptr() as *const _;
		let len = self.memory.data_size();

		if len == 0 {
			&[]
		} else {
			slice::from_raw_parts(ptr, len)
		}
	}

	/// Returns linear memory of the wasm instance as a slice.
	///
	/// # Safety
	///
	/// See `[memory_as_slice]`. In addition to those requirements, since a mutable reference is
	/// returned it must be ensured that only one mutable and no shared references to memory exists
	/// at the same time.
	unsafe fn memory_as_slice_mut(&self) -> &mut [u8] {
		let ptr = self.memory.data_ptr();
		let len = self.memory.data_size();

		if len == 0 {
			&mut []
		} else {
			slice::from_raw_parts_mut(ptr, len)
		}
	}

	/// Returns the pointer to the first byte of the linear memory for this instance.
	pub fn base_ptr(&self) -> *const u8 {
		self.memory.data_ptr()
	}

	/// Removes physical backing from the allocated linear memory. This leads to returning the memory
	/// back to the system. While the memory is zeroed this is considered as a side-effect and is not
	/// relied upon. Thus this function acts as a hint.
	pub fn decommit(&self) {
		if self.memory.data_size() == 0 {
			return
		}

		cfg_if::cfg_if! {
			if #[cfg(target_os = "linux")] {
				use std::sync::Once;

				unsafe {
					let ptr = self.memory.data_ptr();
					let len = self.memory.data_size();

					// Linux handles MADV_DONTNEED reliably. The result is that the given area
					// is unmapped and will be zeroed on the next pagefault.
					if libc::madvise(ptr as _, len, libc::MADV_DONTNEED) != 0 {
						static LOGGED: Once = Once::new();
						LOGGED.call_once(|| {
							log::warn!(
								"madvise(MADV_DONTNEED) failed: {}",
								std::io::Error::last_os_error(),
							);
						});
					}
				}
			}
		}
	}
}

impl runtime_blob::InstanceGlobals for InstanceWrapper {
	type Global = wasmtime::Global;

	fn get_global(&self, export_name: &str) -> Self::Global {
		self.instance
			.get_global(export_name)
			.expect("get_global is guaranteed to be called with an export name of a global; qed")
	}

	fn get_global_value(&self, global: &Self::Global) -> Value {
		util::from_wasmtime_val(global.get())
	}

	fn set_global_value(&self, global: &Self::Global, value: Value) {
		global.set(util::into_wasmtime_val(value)).expect(
			"the value is guaranteed to be of the same value; the global is guaranteed to be mutable; qed",
		);
	}
}