1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
// This file is part of Substrate.

// Copyright (C) 2018-2021 Parity Technologies (UK) Ltd.
// SPDX-License-Identifier: GPL-3.0-or-later WITH Classpath-exception-2.0

// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.

// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.

// You should have received a copy of the GNU General Public License
// along with this program. If not, see <https://www.gnu.org/licenses/>.

use std::{
	cmp,
	collections::{BTreeSet, HashMap, HashSet},
	hash,
	sync::Arc,
};

use log::trace;
use sc_transaction_pool_api::error;
use serde::Serialize;
use sp_runtime::{traits::Member, transaction_validity::TransactionTag as Tag};

use super::{
	base_pool::Transaction,
	future::WaitingTransaction,
	tracked_map::{self, ReadOnlyTrackedMap, TrackedMap},
};

/// An in-pool transaction reference.
///
/// Should be cheap to clone.
#[derive(Debug, parity_util_mem::MallocSizeOf)]
pub struct TransactionRef<Hash, Ex> {
	/// The actual transaction data.
	pub transaction: Arc<Transaction<Hash, Ex>>,
	/// Unique id when transaction was inserted into the pool.
	pub insertion_id: u64,
}

impl<Hash, Ex> Clone for TransactionRef<Hash, Ex> {
	fn clone(&self) -> Self {
		Self { transaction: self.transaction.clone(), insertion_id: self.insertion_id }
	}
}

impl<Hash, Ex> Ord for TransactionRef<Hash, Ex> {
	fn cmp(&self, other: &Self) -> cmp::Ordering {
		self.transaction
			.priority
			.cmp(&other.transaction.priority)
			.then_with(|| other.transaction.valid_till.cmp(&self.transaction.valid_till))
			.then_with(|| other.insertion_id.cmp(&self.insertion_id))
	}
}

impl<Hash, Ex> PartialOrd for TransactionRef<Hash, Ex> {
	fn partial_cmp(&self, other: &Self) -> Option<cmp::Ordering> {
		Some(self.cmp(other))
	}
}

impl<Hash, Ex> PartialEq for TransactionRef<Hash, Ex> {
	fn eq(&self, other: &Self) -> bool {
		self.cmp(other) == cmp::Ordering::Equal
	}
}
impl<Hash, Ex> Eq for TransactionRef<Hash, Ex> {}

#[derive(Debug, parity_util_mem::MallocSizeOf)]
pub struct ReadyTx<Hash, Ex> {
	/// A reference to a transaction
	pub transaction: TransactionRef<Hash, Ex>,
	/// A list of transactions that get unlocked by this one
	pub unlocks: Vec<Hash>,
	/// How many required tags are provided inherently
	///
	/// Some transactions might be already pruned from the queue,
	/// so when we compute ready set we may consider this transactions ready earlier.
	pub requires_offset: usize,
}

impl<Hash: Clone, Ex> Clone for ReadyTx<Hash, Ex> {
	fn clone(&self) -> Self {
		Self {
			transaction: self.transaction.clone(),
			unlocks: self.unlocks.clone(),
			requires_offset: self.requires_offset,
		}
	}
}

const HASH_READY: &str = r#"
Every time transaction is imported its hash is placed in `ready` map and tags in `provided_tags`;
Every time transaction is removed from the queue we remove the hash from `ready` map and from `provided_tags`;
Hence every hash retrieved from `provided_tags` is always present in `ready`;
qed
"#;

/// Validated transactions that are block ready with all their dependencies met.
#[derive(Debug, parity_util_mem::MallocSizeOf)]
pub struct ReadyTransactions<Hash: hash::Hash + Eq, Ex> {
	/// Next free insertion id (used to indicate when a transaction was inserted into the pool).
	insertion_id: u64,
	/// tags that are provided by Ready transactions
	/// (only a single transaction can provide a specific tag)
	provided_tags: HashMap<Tag, Hash>,
	/// Transactions that are ready (i.e. don't have any requirements external to the pool)
	ready: TrackedMap<Hash, ReadyTx<Hash, Ex>>,
	/// Best transactions that are ready to be included to the block without any other previous
	/// transaction.
	best: BTreeSet<TransactionRef<Hash, Ex>>,
}

impl<Hash, Ex> tracked_map::Size for ReadyTx<Hash, Ex> {
	fn size(&self) -> usize {
		self.transaction.transaction.bytes
	}
}

impl<Hash: hash::Hash + Eq, Ex> Default for ReadyTransactions<Hash, Ex> {
	fn default() -> Self {
		Self {
			insertion_id: Default::default(),
			provided_tags: Default::default(),
			ready: Default::default(),
			best: Default::default(),
		}
	}
}

impl<Hash: hash::Hash + Member + Serialize, Ex> ReadyTransactions<Hash, Ex> {
	/// Borrows a map of tags that are provided by transactions in this queue.
	pub fn provided_tags(&self) -> &HashMap<Tag, Hash> {
		&self.provided_tags
	}

	/// Returns an iterator of ready transactions.
	///
	/// Transactions are returned in order:
	/// 1. First by the dependencies:
	/// 	- never return transaction that requires a tag, which was not provided by one of the
	///    previously
	/// returned transactions
	/// 2. Then by priority:
	/// - If there are two transactions with all requirements satisfied the one with higher priority
	///   goes first.
	/// 3. Then by the ttl that's left
	/// - transactions that are valid for a shorter time go first
	/// 4. Lastly we sort by the time in the queue
	/// - transactions that are longer in the queue go first
	pub fn get(&self) -> impl Iterator<Item = Arc<Transaction<Hash, Ex>>> {
		BestIterator {
			all: self.ready.clone(),
			best: self.best.clone(),
			awaiting: Default::default(),
		}
	}

	/// Imports transactions to the pool of ready transactions.
	///
	/// The transaction needs to have all tags satisfied (be ready) by transactions
	/// that are in this queue.
	/// Returns transactions that were replaced by the one imported.
	pub fn import(
		&mut self,
		tx: WaitingTransaction<Hash, Ex>,
	) -> error::Result<Vec<Arc<Transaction<Hash, Ex>>>> {
		assert!(
			tx.is_ready(),
			"Only ready transactions can be imported. Missing: {:?}",
			tx.missing_tags
		);
		assert!(
			!self.ready.read().contains_key(&tx.transaction.hash),
			"Transaction is already imported."
		);

		self.insertion_id += 1;
		let insertion_id = self.insertion_id;
		let hash = tx.transaction.hash.clone();
		let transaction = tx.transaction;

		let (replaced, unlocks) = self.replace_previous(&transaction)?;

		let mut goes_to_best = true;
		let mut ready = self.ready.write();
		let mut requires_offset = 0;
		// Add links to transactions that unlock the current one
		for tag in &transaction.requires {
			// Check if the transaction that satisfies the tag is still in the queue.
			if let Some(other) = self.provided_tags.get(tag) {
				let tx = ready.get_mut(other).expect(HASH_READY);
				tx.unlocks.push(hash.clone());
				// this transaction depends on some other, so it doesn't go to best directly.
				goes_to_best = false;
			} else {
				requires_offset += 1;
			}
		}

		// update provided_tags
		// call to replace_previous guarantees that we will be overwriting
		// only entries that have been removed.
		for tag in &transaction.provides {
			self.provided_tags.insert(tag.clone(), hash.clone());
		}

		let transaction = TransactionRef { insertion_id, transaction };

		// insert to best if it doesn't require any other transaction to be included before it
		if goes_to_best {
			self.best.insert(transaction.clone());
		}

		// insert to Ready
		ready.insert(hash, ReadyTx { transaction, unlocks, requires_offset });

		Ok(replaced)
	}

	/// Fold a list of ready transactions to compute a single value.
	pub fn fold<R, F: FnMut(Option<R>, &ReadyTx<Hash, Ex>) -> Option<R>>(
		&mut self,
		f: F,
	) -> Option<R> {
		self.ready.read().values().fold(None, f)
	}

	/// Returns true if given transaction is part of the queue.
	pub fn contains(&self, hash: &Hash) -> bool {
		self.ready.read().contains_key(hash)
	}

	/// Retrieve transaction by hash
	pub fn by_hash(&self, hash: &Hash) -> Option<Arc<Transaction<Hash, Ex>>> {
		self.by_hashes(&[hash.clone()]).into_iter().next().unwrap_or(None)
	}

	/// Retrieve transactions by hash
	pub fn by_hashes(&self, hashes: &[Hash]) -> Vec<Option<Arc<Transaction<Hash, Ex>>>> {
		let ready = self.ready.read();
		hashes
			.iter()
			.map(|hash| ready.get(hash).map(|x| x.transaction.transaction.clone()))
			.collect()
	}

	/// Removes a subtree of transactions from the ready pool.
	///
	/// NOTE removing a transaction will also cause a removal of all transactions that depend on
	/// that one (i.e. the entire subgraph that this transaction is a start of will be removed).
	/// All removed transactions are returned.
	pub fn remove_subtree(&mut self, hashes: &[Hash]) -> Vec<Arc<Transaction<Hash, Ex>>> {
		let to_remove = hashes.to_vec();
		self.remove_subtree_with_tag_filter(to_remove, None)
	}

	/// Removes a subtrees of transactions trees starting from roots given in `to_remove`.
	///
	/// We proceed with a particular branch only if there is at least one provided tag
	/// that is not part of `provides_tag_filter`. I.e. the filter contains tags
	/// that will stay in the pool, so that we can early exit and avoid descending.
	fn remove_subtree_with_tag_filter(
		&mut self,
		mut to_remove: Vec<Hash>,
		provides_tag_filter: Option<HashSet<Tag>>,
	) -> Vec<Arc<Transaction<Hash, Ex>>> {
		let mut removed = vec![];
		let mut ready = self.ready.write();
		while let Some(hash) = to_remove.pop() {
			if let Some(mut tx) = ready.remove(&hash) {
				let invalidated = tx.transaction.transaction.provides.iter().filter(|tag| {
					provides_tag_filter
						.as_ref()
						.map(|filter| !filter.contains(&**tag))
						.unwrap_or(true)
				});

				let mut removed_some_tags = false;
				// remove entries from provided_tags
				for tag in invalidated {
					removed_some_tags = true;
					self.provided_tags.remove(tag);
				}

				// remove from unlocks
				for tag in &tx.transaction.transaction.requires {
					if let Some(hash) = self.provided_tags.get(tag) {
						if let Some(tx) = ready.get_mut(hash) {
							remove_item(&mut tx.unlocks, &hash);
						}
					}
				}

				// remove from best
				self.best.remove(&tx.transaction);

				if removed_some_tags {
					// remove all transactions that the current one unlocks
					to_remove.append(&mut tx.unlocks);
				}

				// add to removed
				trace!(target: "txpool", "[{:?}] Removed as part of the subtree.", hash);
				removed.push(tx.transaction.transaction);
			}
		}

		removed
	}

	/// Removes transactions that provide given tag.
	///
	/// All transactions that lead to a transaction, which provides this tag
	/// are going to be removed from the queue, but no other transactions are touched -
	/// i.e. all other subgraphs starting from given tag are still considered valid & ready.
	pub fn prune_tags(&mut self, tag: Tag) -> Vec<Arc<Transaction<Hash, Ex>>> {
		let mut removed = vec![];
		let mut to_remove = vec![tag];

		while let Some(tag) = to_remove.pop() {
			let res = self
				.provided_tags
				.remove(&tag)
				.and_then(|hash| self.ready.write().remove(&hash));

			if let Some(tx) = res {
				let unlocks = tx.unlocks;

				// Make sure we remove it from best txs
				self.best.remove(&tx.transaction);

				let tx = tx.transaction.transaction;

				// prune previous transactions as well
				{
					let hash = &tx.hash;
					let mut ready = self.ready.write();
					let mut find_previous = |tag| -> Option<Vec<Tag>> {
						let prev_hash = self.provided_tags.get(tag)?;
						let tx2 = ready.get_mut(&prev_hash)?;
						remove_item(&mut tx2.unlocks, hash);
						// We eagerly prune previous transactions as well.
						// But it might not always be good.
						// Possible edge case:
						// - tx provides two tags
						// - the second tag enables some subgraph we don't know of yet
						// - we will prune the transaction
						// - when we learn about the subgraph it will go to future
						// - we will have to wait for re-propagation of that transaction
						// Alternatively the caller may attempt to re-import these transactions.
						if tx2.unlocks.is_empty() {
							Some(tx2.transaction.transaction.provides.clone())
						} else {
							None
						}
					};

					// find previous transactions
					for tag in &tx.requires {
						if let Some(mut tags_to_remove) = find_previous(tag) {
							to_remove.append(&mut tags_to_remove);
						}
					}
				}

				// add the transactions that just got unlocked to `best`
				for hash in unlocks {
					if let Some(tx) = self.ready.write().get_mut(&hash) {
						tx.requires_offset += 1;
						// this transaction is ready
						if tx.requires_offset == tx.transaction.transaction.requires.len() {
							self.best.insert(tx.transaction.clone());
						}
					}
				}

				// we also need to remove all other tags that this transaction provides,
				// but since all the hard work is done, we only clear the provided_tag -> hash
				// mapping.
				let current_tag = &tag;
				for tag in &tx.provides {
					let removed = self.provided_tags.remove(tag);
					assert_eq!(
						removed.as_ref(),
						if current_tag == tag { None } else { Some(&tx.hash) },
						"The pool contains exactly one transaction providing given tag; the removed transaction
						claims to provide that tag, so it has to be mapped to it's hash; qed"
					);
				}

				removed.push(tx);
			}
		}

		removed
	}

	/// Checks if the transaction is providing the same tags as other transactions.
	///
	/// In case that's true it determines if the priority of transactions that
	/// we are about to replace is lower than the priority of the replacement transaction.
	/// We remove/replace old transactions in case they have lower priority.
	///
	/// In case replacement is successful returns a list of removed transactions
	/// and a list of hashes that are still in pool and gets unlocked by the new transaction.
	fn replace_previous(
		&mut self,
		tx: &Transaction<Hash, Ex>,
	) -> error::Result<(Vec<Arc<Transaction<Hash, Ex>>>, Vec<Hash>)> {
		let (to_remove, unlocks) = {
			// check if we are replacing a transaction
			let replace_hashes = tx
				.provides
				.iter()
				.filter_map(|tag| self.provided_tags.get(tag))
				.collect::<HashSet<_>>();

			// early exit if we are not replacing anything.
			if replace_hashes.is_empty() {
				return Ok((vec![], vec![]))
			}

			// now check if collective priority is lower than the replacement transaction.
			let old_priority = {
				let ready = self.ready.read();
				replace_hashes
					.iter()
					.filter_map(|hash| ready.get(hash))
					.fold(0u64, |total, tx| {
						total.saturating_add(tx.transaction.transaction.priority)
					})
			};

			// bail - the transaction has too low priority to replace the old ones
			if old_priority >= tx.priority {
				return Err(error::Error::TooLowPriority { old: old_priority, new: tx.priority })
			}

			// construct a list of unlocked transactions
			let unlocks = {
				let ready = self.ready.read();
				replace_hashes.iter().filter_map(|hash| ready.get(hash)).fold(
					vec![],
					|mut list, tx| {
						list.extend(tx.unlocks.iter().cloned());
						list
					},
				)
			};

			(replace_hashes.into_iter().cloned().collect::<Vec<_>>(), unlocks)
		};

		let new_provides = tx.provides.iter().cloned().collect::<HashSet<_>>();
		let removed = self.remove_subtree_with_tag_filter(to_remove, Some(new_provides));

		Ok((removed, unlocks))
	}

	/// Returns number of transactions in this queue.
	pub fn len(&self) -> usize {
		self.ready.len()
	}

	/// Returns sum of encoding lengths of all transactions in this queue.
	pub fn bytes(&self) -> usize {
		self.ready.bytes()
	}
}

/// Iterator of ready transactions ordered by priority.
pub struct BestIterator<Hash, Ex> {
	all: ReadOnlyTrackedMap<Hash, ReadyTx<Hash, Ex>>,
	awaiting: HashMap<Hash, (usize, TransactionRef<Hash, Ex>)>,
	best: BTreeSet<TransactionRef<Hash, Ex>>,
}

impl<Hash: hash::Hash + Member, Ex> BestIterator<Hash, Ex> {
	/// Depending on number of satisfied requirements insert given ref
	/// either to awaiting set or to best set.
	fn best_or_awaiting(&mut self, satisfied: usize, tx_ref: TransactionRef<Hash, Ex>) {
		if satisfied >= tx_ref.transaction.requires.len() {
			// If we have satisfied all deps insert to best
			self.best.insert(tx_ref);
		} else {
			// otherwise we're still awaiting for some deps
			self.awaiting.insert(tx_ref.transaction.hash.clone(), (satisfied, tx_ref));
		}
	}
}

impl<Hash: hash::Hash + Member, Ex> Iterator for BestIterator<Hash, Ex> {
	type Item = Arc<Transaction<Hash, Ex>>;

	fn next(&mut self) -> Option<Self::Item> {
		loop {
			let best = self.best.iter().next_back()?.clone();
			let best = self.best.take(&best)?;

			let next = self.all.read().get(&best.transaction.hash).cloned();
			let ready = match next {
				Some(ready) => ready,
				// The transaction is not in all, maybe it was removed in the meantime?
				None => continue,
			};

			// Insert transactions that just got unlocked.
			for hash in &ready.unlocks {
				// first check local awaiting transactions
				let res = if let Some((mut satisfied, tx_ref)) = self.awaiting.remove(hash) {
					satisfied += 1;
					Some((satisfied, tx_ref))
				// then get from the pool
				} else {
					self.all
						.read()
						.get(hash)
						.map(|next| (next.requires_offset + 1, next.transaction.clone()))
				};
				if let Some((satisfied, tx_ref)) = res {
					self.best_or_awaiting(satisfied, tx_ref)
				}
			}

			return Some(best.transaction)
		}
	}
}

// See: https://github.com/rust-lang/rust/issues/40062
fn remove_item<T: PartialEq>(vec: &mut Vec<T>, item: &T) {
	if let Some(idx) = vec.iter().position(|i| i == item) {
		vec.swap_remove(idx);
	}
}

#[cfg(test)]
mod tests {
	use super::*;
	use sp_runtime::transaction_validity::TransactionSource as Source;

	fn tx(id: u8) -> Transaction<u64, Vec<u8>> {
		Transaction {
			data: vec![id],
			bytes: 1,
			hash: id as u64,
			priority: 1,
			valid_till: 2,
			requires: vec![vec![1], vec![2]],
			provides: vec![vec![3], vec![4]],
			propagate: true,
			source: Source::External,
		}
	}

	fn import<H: hash::Hash + Eq + Member + Serialize, Ex>(
		ready: &mut ReadyTransactions<H, Ex>,
		tx: Transaction<H, Ex>,
	) -> error::Result<Vec<Arc<Transaction<H, Ex>>>> {
		let x = WaitingTransaction::new(tx, ready.provided_tags(), &[]);
		ready.import(x)
	}

	#[test]
	fn should_replace_transaction_that_provides_the_same_tag() {
		// given
		let mut ready = ReadyTransactions::default();
		let mut tx1 = tx(1);
		tx1.requires.clear();
		let mut tx2 = tx(2);
		tx2.requires.clear();
		tx2.provides = vec![vec![3]];
		let mut tx3 = tx(3);
		tx3.requires.clear();
		tx3.provides = vec![vec![4]];

		// when
		import(&mut ready, tx2).unwrap();
		import(&mut ready, tx3).unwrap();
		assert_eq!(ready.get().count(), 2);

		// too low priority
		import(&mut ready, tx1.clone()).unwrap_err();

		tx1.priority = 10;
		import(&mut ready, tx1).unwrap();

		// then
		assert_eq!(ready.get().count(), 1);
	}

	#[test]
	fn should_replace_multiple_transactions_correctly() {
		// given
		let mut ready = ReadyTransactions::default();
		let mut tx0 = tx(0);
		tx0.requires = vec![];
		tx0.provides = vec![vec![0]];
		let mut tx1 = tx(1);
		tx1.requires = vec![];
		tx1.provides = vec![vec![1]];
		let mut tx2 = tx(2);
		tx2.requires = vec![vec![0], vec![1]];
		tx2.provides = vec![vec![2], vec![3]];
		let mut tx3 = tx(3);
		tx3.requires = vec![vec![2]];
		tx3.provides = vec![vec![4]];
		let mut tx4 = tx(4);
		tx4.requires = vec![vec![3]];
		tx4.provides = vec![vec![5]];
		// replacement
		let mut tx2_2 = tx(5);
		tx2_2.requires = vec![vec![0], vec![1]];
		tx2_2.provides = vec![vec![2]];
		tx2_2.priority = 10;

		for tx in vec![tx0, tx1, tx2, tx3, tx4] {
			import(&mut ready, tx).unwrap();
		}
		assert_eq!(ready.get().count(), 5);

		// when
		import(&mut ready, tx2_2).unwrap();

		// then
		assert_eq!(ready.get().count(), 3);
	}

	#[test]
	fn should_return_best_transactions_in_correct_order() {
		// given
		let mut ready = ReadyTransactions::default();
		let mut tx1 = tx(1);
		tx1.requires.clear();
		let mut tx2 = tx(2);
		tx2.requires = tx1.provides.clone();
		tx2.provides = vec![vec![106]];
		let mut tx3 = tx(3);
		tx3.requires = vec![tx1.provides[0].clone(), vec![106]];
		tx3.provides = vec![];
		let mut tx4 = tx(4);
		tx4.requires = vec![tx1.provides[0].clone()];
		tx4.provides = vec![];
		let tx5 = Transaction {
			data: vec![5],
			bytes: 1,
			hash: 5,
			priority: 1,
			valid_till: u64::MAX, // use the max here for testing.
			requires: vec![tx1.provides[0].clone()],
			provides: vec![],
			propagate: true,
			source: Source::External,
		};

		// when
		for tx in vec![tx1, tx2, tx3, tx4, tx5] {
			import(&mut ready, tx).unwrap();
		}

		// then
		assert_eq!(ready.best.len(), 1);

		let mut it = ready.get().map(|tx| tx.data[0]);

		assert_eq!(it.next(), Some(1));
		assert_eq!(it.next(), Some(2));
		assert_eq!(it.next(), Some(3));
		assert_eq!(it.next(), Some(4));
		assert_eq!(it.next(), Some(5));
		assert_eq!(it.next(), None);
	}

	#[test]
	fn can_report_heap_size() {
		let mut ready = ReadyTransactions::default();
		let tx = Transaction {
			data: vec![5],
			bytes: 1,
			hash: 5,
			priority: 1,
			valid_till: u64::MAX, // use the max here for testing.
			requires: vec![],
			provides: vec![],
			propagate: true,
			source: Source::External,
		};
		import(&mut ready, tx).unwrap();

		assert!(parity_util_mem::malloc_size(&ready) > 200);
	}

	#[test]
	fn should_order_refs() {
		let mut id = 1;
		let mut with_priority = |priority, longevity| {
			id += 1;
			let mut tx = tx(id);
			tx.priority = priority;
			tx.valid_till = longevity;
			tx
		};
		// higher priority = better
		assert!(
			TransactionRef { transaction: Arc::new(with_priority(3, 3)), insertion_id: 1 } >
				TransactionRef { transaction: Arc::new(with_priority(2, 3)), insertion_id: 2 }
		);
		// lower validity = better
		assert!(
			TransactionRef { transaction: Arc::new(with_priority(3, 2)), insertion_id: 1 } >
				TransactionRef { transaction: Arc::new(with_priority(3, 3)), insertion_id: 2 }
		);
		// lower insertion_id = better
		assert!(
			TransactionRef { transaction: Arc::new(with_priority(3, 3)), insertion_id: 1 } >
				TransactionRef { transaction: Arc::new(with_priority(3, 3)), insertion_id: 2 }
		);
	}
}