1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
// This file is part of Substrate.

// Copyright (C) 2020-2021 Parity Technologies (UK) Ltd.
// SPDX-License-Identifier: Apache-2.0

// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// 	http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

//! Rust implementation of the Phragmén reduce algorithm. This can be used by any off chain
//! application to reduce cycles from the edge assignment, which will result in smaller size.
//!
//!  ### Notions
//!  - `m`: size of the committee to elect.
//!  - `k`: maximum allowed votes (16 as of this writing).
//!  - `nv ∈ E` means that nominator `n ∈ N` supports the election of candidate `v ∈ V`.
//!  - A valid solution consists of a tuple `(S, W)` , where `S ⊆ V` is a committee of m validators,
//!    and `W : E → R ≥ 0` is an edge weight vector which describes how the budget of each nominator
//!    n is fractionally assigned to n 's elected neighbors.
//!  - `E_w := { e ∈ E : w_e > 0 }`.
//!
//!  ### Algorithm overview
//!
//! > We consider the input edge weight vector `w` as a directed flow over `E_w` , where the flow in
//! > each edge is directed from the nominator to the validator. We build `w′` from `w` by removing
//! > **circulations** to cancel out the flow over as many edges as possible, while preserving flow
//! > demands over all vertices and without reverting the flow direction over any edge. As long as
//! > there is a cycle, we can remove an additional circulation and eliminate at least one new edge
//! > from `E_w′` . This shows that the algorithm always progresses and will eventually finish with
//! > an acyclic edge support. We keep a data structure that represents a forest of rooted trees,
//! > which is initialized as a collection of singletons – one per vertex – and to which edges in
//! > `E_w` are added one by one, causing the trees to merge. Whenever a new edge creates a cycle,
//! > we detect it and destroy it by removing a circulation. We also run a pre-computation which is
//! > designed to detect and remove cycles of length four exclusively. This pre-computation is
//! > optional, and if we skip it then the running time becomes `O (|E_w| ⋅ m), so the
//! > pre-computation makes sense only if `m >> k` and `|E_w| >> m^2`.
//!
//! ### Resources:
//!
//! 1. <https://hackmd.io/JOn9x98iS0e0DPWQ87zGWg?view>

use crate::{
	node::{Node, NodeId, NodeRef, NodeRole},
	ExtendedBalance, IdentifierT, StakedAssignment,
};
use sp_arithmetic::traits::{Bounded, Zero};
use sp_std::{
	collections::btree_map::{BTreeMap, Entry::*},
	prelude::*,
	vec,
};

/// Map type used for reduce_4. Can be easily swapped with HashMap.
type Map<A> = BTreeMap<(A, A), A>;

/// Returns all combinations of size two in the collection `input` with no repetition.
fn combinations_2<T: Clone>(input: &[T]) -> Vec<(T, T)> {
	let n = input.len();
	if n < 2 {
		return Default::default()
	}

	let mut comb = Vec::with_capacity(n * (n - 1) / 2);
	for i in 0..n {
		for j in i + 1..n {
			comb.push((input[i].clone(), input[j].clone()))
		}
	}
	comb
}

/// Returns the count of trailing common elements in two slices.
pub(crate) fn trailing_common<T: Eq>(t1: &[T], t2: &[T]) -> usize {
	t1.iter().rev().zip(t2.iter().rev()).take_while(|e| e.0 == e.1).count()
}

/// Merges two parent roots as described by the reduce algorithm.
fn merge<A: IdentifierT>(voter_root_path: Vec<NodeRef<A>>, target_root_path: Vec<NodeRef<A>>) {
	let (shorter_path, longer_path) = if voter_root_path.len() <= target_root_path.len() {
		(voter_root_path, target_root_path)
	} else {
		(target_root_path, voter_root_path)
	};

	// iterate from last to beginning, skipping the first one. This asserts that
	// indexing is always correct.
	shorter_path
		.iter()
		.zip(shorter_path.iter().skip(1))
		.for_each(|(voter, next)| Node::set_parent_of(&next, &voter));
	Node::set_parent_of(&shorter_path[0], &longer_path[0]);
}

/// Reduce only redundant edges with cycle length of 4.
///
/// Returns the number of edges removed.
///
/// It is strictly assumed that the `who` attribute of all provided assignments are unique. The
/// result will most likely be corrupt otherwise.
///
/// O(|E_w| ⋅ k).
fn reduce_4<A: IdentifierT>(assignments: &mut Vec<StakedAssignment<A>>) -> u32 {
	let mut combination_map: Map<A> = Map::new();
	let mut num_changed: u32 = Zero::zero();

	// we have to use the old fashioned loops here with manual indexing. Borrowing assignments will
	// not work since then there is NO way to mutate it inside.
	for assignment_index in 0..assignments.len() {
		let who = assignments[assignment_index].who.clone();

		// all combinations for this particular voter
		let distribution_ids = &assignments[assignment_index]
			.distribution
			.iter()
			.map(|(t, _p)| t.clone())
			.collect::<Vec<A>>();
		let candidate_combinations = combinations_2(distribution_ids);

		for (v1, v2) in candidate_combinations {
			match combination_map.entry((v1.clone(), v2.clone())) {
				Vacant(entry) => {
					entry.insert(who.clone());
				},
				Occupied(mut entry) => {
					let other_who = entry.get_mut();

					// double check if who is still voting for this pair. If not, it means that this
					// pair is no longer valid and must have been removed in previous rounds. The
					// reason for this is subtle; candidate_combinations is created once while the
					// inner loop might remove some edges. Note that if count() > 2, the we have
					// duplicates.
					if assignments[assignment_index]
						.distribution
						.iter()
						.filter(|(t, _)| *t == v1 || *t == v2)
						.count() != 2
					{
						continue
					}

					// check if other_who voted for the same pair v1, v2.
					let maybe_other_assignments = assignments.iter().find(|a| a.who == *other_who);
					if maybe_other_assignments.is_none() {
						continue
					}
					let other_assignment =
						maybe_other_assignments.expect("value is checked to be 'Some'");

					// Collect potential cycle votes
					let mut other_cycle_votes =
						other_assignment
							.distribution
							.iter()
							.filter_map(|(t, w)| {
								if *t == v1 || *t == v2 {
									Some((t.clone(), *w))
								} else {
									None
								}
							})
							.collect::<Vec<(A, ExtendedBalance)>>();

					let other_votes_count = other_cycle_votes.len();

					// If the length is more than 2, then we have identified duplicates. For now, we
					// just skip. Later on we can early exit and stop processing this data since it
					// is corrupt anyhow.
					debug_assert!(other_votes_count <= 2);

					if other_votes_count < 2 {
						// This is not a cycle. Replace and continue.
						*other_who = who.clone();
						continue
					} else if other_votes_count == 2 {
						// This is a cycle.
						let mut who_cycle_votes: Vec<(A, ExtendedBalance)> = Vec::with_capacity(2);
						assignments[assignment_index].distribution.iter().for_each(|(t, w)| {
							if *t == v1 || *t == v2 {
								who_cycle_votes.push((t.clone(), *w));
							}
						});

						if who_cycle_votes.len() != 2 {
							continue
						}

						// Align the targets similarly. This helps with the circulation below.
						if other_cycle_votes[0].0 != who_cycle_votes[0].0 {
							other_cycle_votes.swap(0, 1);
						}

						// Find min
						let mut min_value: ExtendedBalance = Bounded::max_value();
						let mut min_index: usize = 0;
						let cycle = who_cycle_votes
							.iter()
							.chain(other_cycle_votes.iter())
							.enumerate()
							.map(|(index, (t, w))| {
								if *w <= min_value {
									min_value = *w;
									min_index = index;
								}
								(t.clone(), *w)
							})
							.collect::<Vec<(A, ExtendedBalance)>>();

						// min was in the first part of the chained iters
						let mut increase_indices: Vec<usize> = Vec::new();
						let mut decrease_indices: Vec<usize> = Vec::new();
						decrease_indices.push(min_index);
						if min_index < 2 {
							// min_index == 0 => sibling_index <- 1
							// min_index == 1 => sibling_index <- 0
							let sibling_index = 1 - min_index;
							increase_indices.push(sibling_index);
							// valid because the two chained sections of `cycle` are aligned;
							// index [0, 2] are both voting for v1 or both v2. Same goes for [1, 3].
							decrease_indices.push(sibling_index + 2);
							increase_indices.push(min_index + 2);
						} else {
							// min_index == 2 => sibling_index <- 3
							// min_index == 3 => sibling_index <- 2
							let sibling_index = 3 - min_index % 2;
							increase_indices.push(sibling_index);
							// valid because the two chained sections of `cycle` are aligned;
							// index [0, 2] are both voting for v1 or both v2. Same goes for [1, 3].
							decrease_indices.push(sibling_index - 2);
							increase_indices.push(min_index - 2);
						}

						// apply changes
						let mut remove_indices: Vec<usize> = Vec::with_capacity(1);
						increase_indices.into_iter().for_each(|i| {
							let voter = if i < 2 { who.clone() } else { other_who.clone() };
							// Note: so this is pretty ambiguous. We should only look for one
							// assignment that meets this criteria and if we find multiple then that
							// is a corrupt input. Same goes for the next block.
							assignments.iter_mut().filter(|a| a.who == voter).for_each(|ass| {
								ass.distribution
									.iter_mut()
									.position(|(t, _)| *t == cycle[i].0)
									.map(|idx| {
										let next_value =
											ass.distribution[idx].1.saturating_add(min_value);
										ass.distribution[idx].1 = next_value;
									});
							});
						});
						decrease_indices.into_iter().for_each(|i| {
							let voter = if i < 2 { who.clone() } else { other_who.clone() };
							assignments.iter_mut().filter(|a| a.who == voter).for_each(|ass| {
								ass.distribution
									.iter_mut()
									.position(|(t, _)| *t == cycle[i].0)
									.map(|idx| {
										let next_value =
											ass.distribution[idx].1.saturating_sub(min_value);
										if next_value.is_zero() {
											ass.distribution.remove(idx);
											remove_indices.push(i);
											num_changed += 1;
										} else {
											ass.distribution[idx].1 = next_value;
										}
									});
							});
						});

						// remove either one of them.
						let who_removed = remove_indices.iter().find(|i| **i < 2usize).is_some();
						let other_removed =
							remove_indices.into_iter().find(|i| *i >= 2usize).is_some();

						match (who_removed, other_removed) {
							(false, true) => {
								*other_who = who.clone();
							},
							(true, false) => {
								// nothing, other_who can stay there.
							},
							(true, true) => {
								// remove and don't replace
								entry.remove();
							},
							(false, false) => {
								// Neither of the edges was removed? impossible.
								panic!("Duplicate voter (or other corrupt input).");
							},
						}
					}
				},
			}
		}
	}

	num_changed
}

/// Reduce redundant edges from the edge weight graph, with all possible length.
///
/// To get the best performance, this should be called after `reduce_4()`.
///
/// Returns the number of edges removed.
///
/// It is strictly assumed that the `who` attribute of all provided assignments are unique. The
/// result will most likely be corrupt otherwise.
///
/// O(|Ew| ⋅ m)
fn reduce_all<A: IdentifierT>(assignments: &mut Vec<StakedAssignment<A>>) -> u32 {
	let mut num_changed: u32 = Zero::zero();
	let mut tree: BTreeMap<NodeId<A>, NodeRef<A>> = BTreeMap::new();

	// NOTE: This code can heavily use an index cache. Looking up a pair of (voter, target) in the
	// assignments happens numerous times and and we can save time. For now it is written as such
	// because abstracting some of this code into a function/closure is super hard due to borrow
	// checks (and most likely needs unsafe code at the end). For now I will keep it as it and
	// refactor later.

	// a flat iterator of (voter, target) over all pairs of votes. Similar to reduce_4, we loop
	// without borrowing.
	for assignment_index in 0..assignments.len() {
		let voter = assignments[assignment_index].who.clone();

		let mut dist_index = 0;
		loop {
			// A distribution could have been removed. We don't know for sure. Hence, we check.
			let maybe_dist = assignments[assignment_index].distribution.get(dist_index);
			if maybe_dist.is_none() {
				// The rest of this loop is moot.
				break
			}
			let (target, _) = maybe_dist.expect("Value checked to be some").clone();

			// store if they existed already.
			let voter_id = NodeId::from(voter.clone(), NodeRole::Voter);
			let target_id = NodeId::from(target.clone(), NodeRole::Target);
			let voter_exists = tree.contains_key(&voter_id);
			let target_exists = tree.contains_key(&target_id);

			// create both.
			let voter_node = tree
				.entry(voter_id.clone())
				.or_insert_with(|| Node::new(voter_id).into_ref())
				.clone();
			let target_node = tree
				.entry(target_id.clone())
				.or_insert_with(|| Node::new(target_id).into_ref())
				.clone();

			// If one exists but the other one doesn't, or if both does not, then set the existing
			// one as the parent of the non-existing one and move on. Else, continue with the rest
			// of the code.
			match (voter_exists, target_exists) {
				(false, false) => {
					Node::set_parent_of(&target_node, &voter_node);
					dist_index += 1;
					continue
				},
				(false, true) => {
					Node::set_parent_of(&voter_node, &target_node);
					dist_index += 1;
					continue
				},
				(true, false) => {
					Node::set_parent_of(&target_node, &voter_node);
					dist_index += 1;
					continue
				},
				(true, true) => { /* don't continue and execute the rest */ },
			};

			let (voter_root, voter_root_path) = Node::root(&voter_node);
			let (target_root, target_root_path) = Node::root(&target_node);

			if voter_root != target_root {
				// swap
				merge(voter_root_path, target_root_path);
				dist_index += 1;
			} else {
				// find common and cycle.
				let common_count = trailing_common(&voter_root_path, &target_root_path);

				// because roots are the same.
				#[cfg(feature = "std")]
				debug_assert_eq!(target_root_path.last().unwrap(), voter_root_path.last().unwrap());
				debug_assert!(common_count > 0);

				// cycle part of each path will be `path[path.len() - common_count - 1 : 0]`
				// NOTE: the order of chaining is important! it is always build from [target, ...,
				// voter]
				let cycle = target_root_path
					.iter()
					.take(target_root_path.len() - common_count + 1)
					.cloned()
					.chain(
						voter_root_path
							.iter()
							.take(voter_root_path.len() - common_count)
							.rev()
							.cloned(),
					)
					.collect::<Vec<NodeRef<A>>>();

				// a cycle's length shall always be multiple of two.
				#[cfg(feature = "std")]
				debug_assert_eq!(cycle.len() % 2, 0);

				// find minimum of cycle.
				let mut min_value: ExtendedBalance = Bounded::max_value();
				// The voter and the target pair that create the min edge.
				let mut min_target: A = Default::default();
				let mut min_voter: A = Default::default();
				// The index of the min in opaque cycle list.
				let mut min_index = 0usize;
				// 1 -> next // 0 -> prev
				let mut min_direction = 0u32;
				// helpers
				let next_index = |i| {
					if i < (cycle.len() - 1) {
						i + 1
					} else {
						0
					}
				};
				let prev_index = |i| {
					if i > 0 {
						i - 1
					} else {
						cycle.len() - 1
					}
				};
				for i in 0..cycle.len() {
					if cycle[i].borrow().id.role == NodeRole::Voter {
						// NOTE: sadly way too many clones since I don't want to make A: Copy
						let current = cycle[i].borrow().id.who.clone();
						let next = cycle[next_index(i)].borrow().id.who.clone();
						let prev = cycle[prev_index(i)].borrow().id.who.clone();
						assignments.iter().find(|a| a.who == current).map(|ass| {
							ass.distribution.iter().find(|d| d.0 == next).map(|(_, w)| {
								if *w < min_value {
									min_value = *w;
									min_target = next.clone();
									min_voter = current.clone();
									min_index = i;
									min_direction = 1;
								}
							})
						});
						assignments.iter().find(|a| a.who == current).map(|ass| {
							ass.distribution.iter().find(|d| d.0 == prev).map(|(_, w)| {
								if *w < min_value {
									min_value = *w;
									min_target = prev.clone();
									min_voter = current.clone();
									min_index = i;
									min_direction = 0;
								}
							})
						});
					}
				}

				// if the min edge is in the voter's sub-chain.
				// [target, ..., X, Y, ... voter]
				let target_chunk = target_root_path.len() - common_count;
				let min_chain_in_voter = (min_index + min_direction as usize) > target_chunk;

				// walk over the cycle and update the weights
				let mut should_inc_counter = true;
				let start_operation_add = ((min_index % 2) + min_direction as usize) % 2 == 1;
				let mut additional_removed = Vec::new();
				for i in 0..cycle.len() {
					let current = cycle[i].borrow();
					if current.id.role == NodeRole::Voter {
						let prev = cycle[prev_index(i)].borrow();
						assignments
							.iter_mut()
							.enumerate()
							.filter(|(_, a)| a.who == current.id.who)
							.for_each(|(target_ass_index, ass)| {
								ass.distribution
									.iter_mut()
									.position(|(t, _)| *t == prev.id.who)
									.map(|idx| {
										let next_value = if i % 2 == 0 {
											if start_operation_add {
												ass.distribution[idx].1.saturating_add(min_value)
											} else {
												ass.distribution[idx].1.saturating_sub(min_value)
											}
										} else {
											if start_operation_add {
												ass.distribution[idx].1.saturating_sub(min_value)
											} else {
												ass.distribution[idx].1.saturating_add(min_value)
											}
										};

										if next_value.is_zero() {
											// if the removed edge is from the current assignment,
											// index should NOT be increased.
											if target_ass_index == assignment_index {
												should_inc_counter = false
											}
											ass.distribution.remove(idx);
											num_changed += 1;
											// only add if this is not the min itself.
											if !(i == min_index && min_direction == 0) {
												additional_removed.push((
													cycle[i].clone(),
													cycle[prev_index(i)].clone(),
												));
											}
										} else {
											ass.distribution[idx].1 = next_value;
										}
									});
							});

						let next = cycle[next_index(i)].borrow();
						assignments
							.iter_mut()
							.enumerate()
							.filter(|(_, a)| a.who == current.id.who)
							.for_each(|(target_ass_index, ass)| {
								ass.distribution
									.iter_mut()
									.position(|(t, _)| *t == next.id.who)
									.map(|idx| {
										let next_value = if i % 2 == 0 {
											if start_operation_add {
												ass.distribution[idx].1.saturating_sub(min_value)
											} else {
												ass.distribution[idx].1.saturating_add(min_value)
											}
										} else {
											if start_operation_add {
												ass.distribution[idx].1.saturating_add(min_value)
											} else {
												ass.distribution[idx].1.saturating_sub(min_value)
											}
										};

										if next_value.is_zero() {
											// if the removed edge is from the current assignment,
											// index should NOT be increased.
											if target_ass_index == assignment_index {
												should_inc_counter = false
											}
											ass.distribution.remove(idx);
											num_changed += 1;
											if !(i == min_index && min_direction == 1) {
												additional_removed.push((
													cycle[i].clone(),
													cycle[next_index(i)].clone(),
												));
											}
										} else {
											ass.distribution[idx].1 = next_value;
										}
									});
							});
					}
				}

				// don't do anything if the edge removed itself. This is always the first and last
				// element
				let should_reorg = !(min_index == (cycle.len() - 1) && min_direction == 1);

				// re-org.
				if should_reorg {
					let min_edge = vec![min_voter, min_target];
					if min_chain_in_voter {
						// NOTE: safe; voter_root_path is always bigger than 1 element.
						for i in 0..voter_root_path.len() - 1 {
							let current = voter_root_path[i].clone().borrow().id.who.clone();
							let next = voter_root_path[i + 1].clone().borrow().id.who.clone();
							if min_edge.contains(&current) && min_edge.contains(&next) {
								break
							}
							Node::set_parent_of(&voter_root_path[i + 1], &voter_root_path[i]);
						}
						Node::set_parent_of(&voter_node, &target_node);
					} else {
						// NOTE: safe; target_root_path is always bigger than 1 element.
						for i in 0..target_root_path.len() - 1 {
							let current = target_root_path[i].clone().borrow().id.who.clone();
							let next = target_root_path[i + 1].clone().borrow().id.who.clone();
							if min_edge.contains(&current) && min_edge.contains(&next) {
								break
							}
							Node::set_parent_of(&target_root_path[i + 1], &target_root_path[i]);
						}
						Node::set_parent_of(&target_node, &voter_node);
					}
				}

				// remove every other node which has collapsed to zero
				for (r1, r2) in additional_removed {
					if Node::is_parent_of(&r1, &r2) {
						Node::remove_parent(&r1);
					} else if Node::is_parent_of(&r2, &r1) {
						Node::remove_parent(&r2);
					}
				}

				// increment the counter if needed.
				if should_inc_counter {
					dist_index += 1;
				}
			}
		}
	}

	num_changed
}

/// Reduce the given [`Vec<StakedAssignment<IdentifierT>>`]. This removes redundant edges from
/// without changing the overall backing of any of the elected candidates.
///
/// Returns the number of edges removed.
///
/// IMPORTANT: It is strictly assumed that the `who` attribute of all provided assignments are
/// unique. The result will most likely be corrupt otherwise. Furthermore, if the _distribution
/// vector_ contains duplicate ids, only the first instance is ever updates.
///
/// O(min{ |Ew| ⋅ k + m3 , |Ew| ⋅ m })
pub fn reduce<A: IdentifierT>(assignments: &mut Vec<StakedAssignment<A>>) -> u32 where {
	let mut num_changed = reduce_4(assignments);
	num_changed += reduce_all(assignments);
	num_changed
}

#[cfg(test)]
mod tests {
	use super::*;

	#[test]
	fn merging_works() {
		// 	D <-- A <-- B <-- C
		//
		// 		F <-- E
		let d = Node::new(NodeId::from(1, NodeRole::Target)).into_ref();
		let a = Node::new(NodeId::from(2, NodeRole::Target)).into_ref();
		let b = Node::new(NodeId::from(3, NodeRole::Target)).into_ref();
		let c = Node::new(NodeId::from(4, NodeRole::Target)).into_ref();
		let e = Node::new(NodeId::from(5, NodeRole::Target)).into_ref();
		let f = Node::new(NodeId::from(6, NodeRole::Target)).into_ref();

		Node::set_parent_of(&c, &b);
		Node::set_parent_of(&b, &a);
		Node::set_parent_of(&a, &d);
		Node::set_parent_of(&e, &f);

		let path1 = vec![c.clone(), b.clone(), a.clone(), d.clone()];
		let path2 = vec![e.clone(), f.clone()];

		merge(path1, path2);
		// 	D <-- A <-- B <-- C
		// 					  |
		// 		F --> E --> -->
		assert_eq!(e.borrow().clone().parent.unwrap().borrow().id.who, 4u32); // c
	}

	#[test]
	fn merge_with_len_one() {
		// 	D <-- A <-- B <-- C
		//
		// 		F <-- E
		let d = Node::new(NodeId::from(1, NodeRole::Target)).into_ref();
		let a = Node::new(NodeId::from(2, NodeRole::Target)).into_ref();
		let b = Node::new(NodeId::from(3, NodeRole::Target)).into_ref();
		let c = Node::new(NodeId::from(4, NodeRole::Target)).into_ref();
		let f = Node::new(NodeId::from(6, NodeRole::Target)).into_ref();

		Node::set_parent_of(&c, &b);
		Node::set_parent_of(&b, &a);
		Node::set_parent_of(&a, &d);

		let path1 = vec![c.clone(), b.clone(), a.clone(), d.clone()];
		let path2 = vec![f.clone()];

		merge(path1, path2);
		// 	D <-- A <-- B <-- C
		// 					  |
		// 			F -->  -->
		assert_eq!(f.borrow().clone().parent.unwrap().borrow().id.who, 4u32); // c
	}

	#[test]
	fn basic_reduce_4_cycle_works() {
		use super::*;

		let assignments = vec![
			StakedAssignment { who: 1, distribution: vec![(10, 25), (20, 75)] },
			StakedAssignment { who: 2, distribution: vec![(10, 50), (20, 50)] },
		];

		let mut new_assignments = assignments.clone();
		let num_reduced = reduce_4(&mut new_assignments);

		assert_eq!(num_reduced, 1);
		assert_eq!(
			new_assignments,
			vec![
				StakedAssignment { who: 1, distribution: vec![(20, 100),] },
				StakedAssignment { who: 2, distribution: vec![(10, 75), (20, 25),] },
			],
		);
	}

	#[test]
	fn basic_reduce_all_cycles_works() {
		let mut assignments = vec![
			StakedAssignment { who: 1, distribution: vec![(10, 10)] },
			StakedAssignment { who: 2, distribution: vec![(10, 15), (20, 5)] },
			StakedAssignment { who: 3, distribution: vec![(20, 15), (40, 15)] },
			StakedAssignment { who: 4, distribution: vec![(20, 10), (30, 10), (40, 20)] },
			StakedAssignment { who: 5, distribution: vec![(20, 20), (30, 10), (40, 20)] },
		];

		assert_eq!(3, reduce_all(&mut assignments));

		assert_eq!(
			assignments,
			vec![
				StakedAssignment { who: 1, distribution: vec![(10, 10),] },
				StakedAssignment { who: 2, distribution: vec![(10, 15), (20, 5),] },
				StakedAssignment { who: 3, distribution: vec![(20, 30),] },
				StakedAssignment { who: 4, distribution: vec![(40, 40),] },
				StakedAssignment { who: 5, distribution: vec![(20, 15), (30, 20), (40, 15),] },
			],
		)
	}

	#[test]
	fn basic_reduce_works() {
		let mut assignments = vec![
			StakedAssignment { who: 1, distribution: vec![(10, 10)] },
			StakedAssignment { who: 2, distribution: vec![(10, 15), (20, 5)] },
			StakedAssignment { who: 3, distribution: vec![(20, 15), (40, 15)] },
			StakedAssignment { who: 4, distribution: vec![(20, 10), (30, 10), (40, 20)] },
			StakedAssignment { who: 5, distribution: vec![(20, 20), (30, 10), (40, 20)] },
		];

		assert_eq!(3, reduce(&mut assignments));

		assert_eq!(
			assignments,
			vec![
				StakedAssignment { who: 1, distribution: vec![(10, 10),] },
				StakedAssignment { who: 2, distribution: vec![(10, 15), (20, 5),] },
				StakedAssignment { who: 3, distribution: vec![(20, 30),] },
				StakedAssignment { who: 4, distribution: vec![(40, 40),] },
				StakedAssignment { who: 5, distribution: vec![(20, 15), (30, 20), (40, 15),] },
			],
		)
	}

	#[test]
	fn should_deal_with_self_vote() {
		let mut assignments = vec![
			StakedAssignment { who: 1, distribution: vec![(10, 10)] },
			StakedAssignment { who: 2, distribution: vec![(10, 15), (20, 5)] },
			StakedAssignment { who: 3, distribution: vec![(20, 15), (40, 15)] },
			StakedAssignment { who: 4, distribution: vec![(20, 10), (30, 10), (40, 20)] },
			StakedAssignment { who: 5, distribution: vec![(20, 20), (30, 10), (40, 20)] },
			// self vote from 10 and 20 to itself.
			StakedAssignment { who: 10, distribution: vec![(10, 100)] },
			StakedAssignment { who: 20, distribution: vec![(20, 200)] },
		];

		assert_eq!(3, reduce(&mut assignments));

		assert_eq!(
			assignments,
			vec![
				StakedAssignment { who: 1, distribution: vec![(10, 10),] },
				StakedAssignment { who: 2, distribution: vec![(10, 15), (20, 5),] },
				StakedAssignment { who: 3, distribution: vec![(20, 30),] },
				StakedAssignment { who: 4, distribution: vec![(40, 40),] },
				StakedAssignment { who: 5, distribution: vec![(20, 15), (30, 20), (40, 15),] },
				// should stay untouched.
				StakedAssignment { who: 10, distribution: vec![(10, 100)] },
				StakedAssignment { who: 20, distribution: vec![(20, 200)] },
			],
		)
	}

	#[test]
	fn reduce_3_common_votes_same_weight() {
		let mut assignments = vec![
			StakedAssignment {
				who: 4,
				distribution: vec![(1000000, 100), (1000002, 100), (1000004, 100)],
			},
			StakedAssignment {
				who: 5,
				distribution: vec![(1000000, 100), (1000002, 100), (1000004, 100)],
			},
		];

		reduce_4(&mut assignments);

		assert_eq!(
			assignments,
			vec![
				StakedAssignment { who: 4, distribution: vec![(1000000, 200,), (1000004, 100,),] },
				StakedAssignment { who: 5, distribution: vec![(1000002, 200,), (1000004, 100,),] },
			],
		)
	}

	#[test]
	#[should_panic]
	fn reduce_panics_on_duplicate_voter() {
		let mut assignments = vec![
			StakedAssignment { who: 1, distribution: vec![(10, 10), (20, 10)] },
			StakedAssignment { who: 1, distribution: vec![(10, 15), (20, 5)] },
			StakedAssignment { who: 2, distribution: vec![(10, 15), (20, 15)] },
		];

		reduce(&mut assignments);
	}

	#[test]
	fn should_deal_with_duplicates_target() {
		let mut assignments = vec![
			StakedAssignment { who: 1, distribution: vec![(10, 15), (20, 5)] },
			StakedAssignment {
				who: 2,
				distribution: vec![
					(10, 15),
					(20, 15),
					// duplicate
					(10, 1),
					// duplicate
					(20, 1),
				],
			},
		];

		reduce(&mut assignments);

		assert_eq!(
			assignments,
			vec![
				StakedAssignment { who: 1, distribution: vec![(10, 20),] },
				StakedAssignment {
					who: 2,
					distribution: vec![
						(10, 10),
						(20, 20),
						// duplicate votes are silently ignored.
						(10, 1),
						(20, 1),
					],
				},
			],
		)
	}

	#[test]
	fn bound_should_be_kept() {
		let mut assignments = vec![
			StakedAssignment {
				who: 1,
				distribution: vec![(103, 72), (101, 53), (100, 83), (102, 38)],
			},
			StakedAssignment {
				who: 2,
				distribution: vec![(103, 18), (101, 36), (102, 54), (100, 94)],
			},
			StakedAssignment {
				who: 3,
				distribution: vec![(100, 96), (101, 35), (102, 52), (103, 69)],
			},
			StakedAssignment {
				who: 4,
				distribution: vec![(102, 34), (100, 47), (103, 91), (101, 73)],
			},
		];

		let winners = vec![103, 101, 100, 102];

		let n = 4;
		let m = winners.len() as u32;
		let num_reduced = reduce_all(&mut assignments);
		assert!(16 - num_reduced <= n + m);
	}
}