1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61
// This file is part of Substrate. // Copyright (C) 2020-2021 Parity Technologies (UK) Ltd. // SPDX-License-Identifier: Apache-2.0 // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. //! # Running //! Running this fuzzer can be done with `cargo hfuzz run normalize`. `honggfuzz` CLI options can //! be used by setting `HFUZZ_RUN_ARGS`, such as `-n 4` to use 4 threads. //! //! # Debugging a panic //! Once a panic is found, it can be debugged with //! `cargo hfuzz run-debug normalize hfuzz_workspace/normalize/*.fuzz`. use honggfuzz::fuzz; use sp_arithmetic::Normalizable; use std::convert::TryInto; type Ty = u64; fn main() { let sum_limit = Ty::max_value() as u128; let len_limit: usize = Ty::max_value().try_into().unwrap(); loop { fuzz!(|data: (Vec<Ty>, Ty)| { let (data, norm) = data; if data.len() == 0 { return } let pre_sum: u128 = data.iter().map(|x| *x as u128).sum(); let normalized = data.normalize(norm); // error cases. if pre_sum > sum_limit || data.len() > len_limit { assert!(normalized.is_err()) } else { if let Ok(normalized) = normalized { // if sum goes beyond u128, panic. let sum: u128 = normalized.iter().map(|x| *x as u128).sum(); // if this function returns Ok(), then it will ALWAYS be accurate. assert_eq!(sum, norm as u128, "sums don't match {:?}, {}", normalized, norm); } else { panic!("Should have returned Ok for input = {:?}, target = {:?}", data, norm); } } }) } }