Files
biguint
chain_spec_builder
compact
fixed_point
fork_tree
frame_benchmarking
frame_benchmarking_cli
frame_election_provider_support
frame_executive
frame_metadata
frame_support
frame_support_procedural
frame_support_procedural_tools
frame_support_procedural_tools_derive
frame_support_test
frame_support_test_pallet
frame_system
frame_system_benchmarking
frame_system_rpc_runtime_api
frame_try_runtime
multiply_by_rational
node_bench
node_browser_testing
node_cli
node_executor
node_inspect
node_primitives
node_rpc
node_rpc_client
node_runtime
node_template
node_template_runtime
node_testing
normalize
pallet_assets
pallet_atomic_swap
pallet_aura
pallet_authority_discovery
pallet_authorship
pallet_babe
pallet_balances
pallet_bounties
pallet_collective
pallet_contracts
pallet_contracts_primitives
pallet_contracts_proc_macro
pallet_contracts_rpc
pallet_contracts_rpc_runtime_api
pallet_democracy
pallet_election_provider_multi_phase
pallet_elections
pallet_elections_phragmen
pallet_example
pallet_example_offchain_worker
pallet_example_parallel
pallet_gilt
pallet_grandpa
pallet_identity
pallet_im_online
pallet_indices
pallet_lottery
pallet_membership
pallet_mmr
pallet_mmr_primitives
pallet_mmr_rpc
pallet_multisig
pallet_nicks
pallet_node_authorization
pallet_offences
pallet_offences_benchmarking
pallet_proxy
pallet_randomness_collective_flip
pallet_recovery
pallet_scheduler
pallet_scored_pool
pallet_session
pallet_session_benchmarking
pallet_society
pallet_staking
pallet_staking_reward_curve
pallet_staking_reward_fn
pallet_sudo
pallet_template
pallet_timestamp
pallet_tips
pallet_transaction_payment
pallet_transaction_payment_rpc
pallet_transaction_payment_rpc_runtime_api
pallet_transaction_storage
pallet_treasury
pallet_uniques
pallet_utility
pallet_vesting
per_thing_rational
phragmen_balancing
phragmen_pjr
phragmms_balancing
reduce
remote_externalities
sc_allocator
sc_authority_discovery
sc_basic_authorship
sc_block_builder
sc_chain_spec
sc_chain_spec_derive
sc_cli
sc_client_api
sc_client_db
sc_consensus
sc_consensus_aura
sc_consensus_babe
sc_consensus_babe_rpc
sc_consensus_epochs
sc_consensus_manual_seal
sc_consensus_pow
sc_consensus_slots
sc_consensus_uncles
sc_executor
sc_executor_common
sc_executor_wasmi
sc_executor_wasmtime
sc_finality_grandpa
sc_finality_grandpa_rpc
sc_informant
sc_keystore
sc_light
sc_network
sc_network_gossip
sc_network_test
sc_offchain
sc_peerset
sc_proposer_metrics
sc_rpc
sc_rpc_api
sc_rpc_server
sc_runtime_test
sc_service
sc_service_test
sc_state_db
sc_sync_state_rpc
sc_telemetry
sc_tracing
sc_tracing_proc_macro
sc_transaction_pool
sc_transaction_pool_api
sp_api
sp_api_proc_macro
sp_application_crypto
sp_application_crypto_test
sp_arithmetic
sp_authority_discovery
sp_authorship
sp_block_builder
sp_blockchain
sp_consensus
sp_consensus_aura
sp_consensus_babe
sp_consensus_pow
sp_consensus_slots
sp_consensus_vrf
sp_core
sp_database
sp_debug_derive
sp_externalities
sp_finality_grandpa
sp_inherents
sp_io
sp_keyring
sp_keystore
sp_maybe_compressed_blob
sp_npos_elections
sp_npos_elections_solution_type
sp_offchain
sp_panic_handler
sp_rpc
sp_runtime
sp_runtime_interface
sp_runtime_interface_proc_macro
sp_runtime_interface_test
sp_runtime_interface_test_wasm
sp_runtime_interface_test_wasm_deprecated
sp_sandbox
sp_serializer
sp_session
sp_staking
sp_state_machine
sp_std
sp_storage
sp_tasks
sp_test_primitives
sp_timestamp
sp_tracing
sp_transaction_pool
sp_transaction_storage_proof
sp_trie
sp_utils
sp_version
sp_version_proc_macro
sp_wasm_interface
subkey
substrate
substrate_browser_utils
substrate_build_script_utils
substrate_frame_cli
substrate_frame_rpc_support
substrate_frame_rpc_system
substrate_prometheus_endpoint
substrate_test_client
substrate_test_runtime
substrate_test_runtime_client
substrate_test_runtime_transaction_pool
substrate_test_utils
substrate_test_utils_derive
substrate_test_utils_test_crate
substrate_wasm_builder
test_runner
test_runner_example
try_runtime_cli
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
use std::convert::TryInto;

/// Simple u32 power of 2 function - simply uses a bit shift
macro_rules! pow2 {
	($n:expr) => {
		1_u32 << $n
	};
}

/// Returns the k_th per_million taylor term for a log2 function
fn taylor_term(k: u32, y_num: u128, y_den: u128) -> u32 {
	let _2_div_ln_2: u128 = 2_885_390u128;

	if k == 0 {
		(_2_div_ln_2 * (y_num).pow(1) / (y_den).pow(1)).try_into().unwrap()
	} else {
		let mut res = _2_div_ln_2 * (y_num).pow(3) / (y_den).pow(3);
		for _ in 1..k {
			res = res * (y_num).pow(2) / (y_den).pow(2);
		}
		res /= 2 * k as u128 + 1;

		res.try_into().unwrap()
	}
}

/// Performs a log2 operation using a rational fraction
///
/// result = log2(p/q) where p/q is bound to [1, 1_000_000]
/// Where:
/// * q represents the numerator of the rational fraction input
/// * p represents the denominator of the rational fraction input
/// * result represents a per-million output of log2
pub fn log2(p: u32, q: u32) -> u32 {
	assert!(p >= q); // keep p/q bound to [1, inf)
	assert!(p <= u32::MAX / 2);

	// This restriction should not be mandatory. But function is only tested and used for this.
	assert!(p <= 1_000_000);
	assert!(q <= 1_000_000);

	// log2(1) = 0
	if p == q {
		return 0
	}

	// find the power of 2 where q * 2^n <= p < q * 2^(n+1)
	let mut n = 0u32;
	while (p < pow2!(n) * q) || (p >= pow2!(n + 1) * q) {
		n += 1;
		assert!(n < 32); // cannot represent 2^32 in u32
	}
	assert!(p < pow2!(n + 1) * q);

	let y_num: u32 = p - pow2!(n) * q;
	let y_den: u32 = p + pow2!(n) * q;

	// Loop through each Taylor series coefficient until it reaches 10^-6
	let mut res = n * 1_000_000u32;
	let mut k = 0;
	loop {
		let term = taylor_term(k, y_num.into(), y_den.into());
		if term == 0 {
			break
		}

		res += term;
		k += 1;
	}

	res
}

#[test]
fn test_log() {
	let div = 1_000;
	for p in 0..=div {
		for q in 1..=p {
			let p: u32 = (1_000_000 as u64 * p as u64 / div as u64).try_into().unwrap();
			let q: u32 = (1_000_000 as u64 * q as u64 / div as u64).try_into().unwrap();

			let res = -(log2(p, q) as i64);
			let expected = ((q as f64 / p as f64).log(2.0) * 1_000_000 as f64).round() as i64;
			assert!((res - expected).abs() <= 6);
		}
	}
}

#[test]
#[should_panic]
fn test_log_p_must_be_greater_than_q() {
	let p: u32 = 1_000;
	let q: u32 = 1_001;
	let _ = log2(p, q);
}

#[test]
#[should_panic]
fn test_log_p_upper_bound() {
	let p: u32 = 1_000_001;
	let q: u32 = 1_000_000;
	let _ = log2(p, q);
}

#[test]
#[should_panic]
fn test_log_q_limit() {
	let p: u32 = 1_000_000;
	let q: u32 = 0;
	let _ = log2(p, q);
}

#[test]
fn test_log_of_one_boundary() {
	let p: u32 = 1_000_000;
	let q: u32 = 1_000_000;
	assert_eq!(log2(p, q), 0);
}

#[test]
fn test_log_of_largest_input() {
	let p: u32 = 1_000_000;
	let q: u32 = 1;
	let expected = 19_931_568;
	let tolerance = 100;
	assert!((log2(p, q) as i32 - expected as i32).abs() < tolerance);
}