Enum sp_std::borrow::Cow 1.0.0[−][src]
pub enum Cow<'a, B> where
B: 'a + ToOwned + ?Sized, { Borrowed(&'a B), Owned(<B as ToOwned>::Owned), }
Expand description
A clone-on-write smart pointer.
The type Cow
is a smart pointer providing clone-on-write functionality: it
can enclose and provide immutable access to borrowed data, and clone the
data lazily when mutation or ownership is required. The type is designed to
work with general borrowed data via the Borrow
trait.
Cow
implements Deref
, which means that you can call
non-mutating methods directly on the data it encloses. If mutation
is desired, to_mut
will obtain a mutable reference to an owned
value, cloning if necessary.
If you need reference-counting pointers, note that
Rc::make_mut
and
Arc::make_mut
can provide clone-on-write
functionality as well.
Examples
use std::borrow::Cow; fn abs_all(input: &mut Cow<[i32]>) { for i in 0..input.len() { let v = input[i]; if v < 0 { // Clones into a vector if not already owned. input.to_mut()[i] = -v; } } } // No clone occurs because `input` doesn't need to be mutated. let slice = [0, 1, 2]; let mut input = Cow::from(&slice[..]); abs_all(&mut input); // Clone occurs because `input` needs to be mutated. let slice = [-1, 0, 1]; let mut input = Cow::from(&slice[..]); abs_all(&mut input); // No clone occurs because `input` is already owned. let mut input = Cow::from(vec![-1, 0, 1]); abs_all(&mut input);
Another example showing how to keep Cow
in a struct:
use std::borrow::Cow; struct Items<'a, X: 'a> where [X]: ToOwned<Owned = Vec<X>> { values: Cow<'a, [X]>, } impl<'a, X: Clone + 'a> Items<'a, X> where [X]: ToOwned<Owned = Vec<X>> { fn new(v: Cow<'a, [X]>) -> Self { Items { values: v } } } // Creates a container from borrowed values of a slice let readonly = [1, 2]; let borrowed = Items::new((&readonly[..]).into()); match borrowed { Items { values: Cow::Borrowed(b) } => println!("borrowed {:?}", b), _ => panic!("expect borrowed value"), } let mut clone_on_write = borrowed; // Mutates the data from slice into owned vec and pushes a new value on top clone_on_write.values.to_mut().push(3); println!("clone_on_write = {:?}", clone_on_write.values); // The data was mutated. Let check it out. match clone_on_write { Items { values: Cow::Owned(_) } => println!("clone_on_write contains owned data"), _ => panic!("expect owned data"), }
Variants
Borrowed(&'a B)
Borrowed data.
Owned data.
Implementations
🔬 This is a nightly-only experimental API. (cow_is_borrowed
)
cow_is_borrowed
)Returns true if the data is borrowed, i.e. if to_mut
would require additional work.
Examples
#![feature(cow_is_borrowed)] use std::borrow::Cow; let cow = Cow::Borrowed("moo"); assert!(cow.is_borrowed()); let bull: Cow<'_, str> = Cow::Owned("...moo?".to_string()); assert!(!bull.is_borrowed());
🔬 This is a nightly-only experimental API. (cow_is_borrowed
)
cow_is_borrowed
)Returns true if the data is owned, i.e. if to_mut
would be a no-op.
Examples
#![feature(cow_is_borrowed)] use std::borrow::Cow; let cow: Cow<'_, str> = Cow::Owned("moo".to_string()); assert!(cow.is_owned()); let bull = Cow::Borrowed("...moo?"); assert!(!bull.is_owned());
Acquires a mutable reference to the owned form of the data.
Clones the data if it is not already owned.
Examples
use std::borrow::Cow; let mut cow = Cow::Borrowed("foo"); cow.to_mut().make_ascii_uppercase(); assert_eq!( cow, Cow::Owned(String::from("FOO")) as Cow<str> );
Extracts the owned data.
Clones the data if it is not already owned.
Examples
Calling into_owned
on a Cow::Borrowed
clones the underlying data
and becomes a Cow::Owned
:
use std::borrow::Cow; let s = "Hello world!"; let cow = Cow::Borrowed(s); assert_eq!( cow.into_owned(), String::from(s) );
Calling into_owned
on a Cow::Owned
is a no-op:
use std::borrow::Cow; let s = "Hello world!"; let cow: Cow<str> = Cow::Owned(String::from(s)); assert_eq!( cow.into_owned(), String::from(s) );
Trait Implementations
Performs the +=
operation. Read more
Performs the +=
operation. Read more
Extends a collection with the contents of an iterator. Read more
extend_one
)Extends a collection with exactly one element.
extend_one
)Reserves capacity in a collection for the given number of additional elements. Read more
Extends a collection with the contents of an iterator. Read more
extend_one
)Extends a collection with exactly one element.
extend_one
)Reserves capacity in a collection for the given number of additional elements. Read more
pub fn from(cow: Cow<'_, [T]>) -> Box<[T], Global>ⓘNotable traits for Box<R, Global>
impl<R> Read for Box<R, Global> where
R: Read + ?Sized, impl<W> Write for Box<W, Global> where
W: Write + ?Sized, impl<F, A> Future for Box<F, A> where
A: Allocator + 'static,
F: Future + Unpin + ?Sized, type Output = <F as Future>::Output;impl<I, A> Iterator for Box<I, A> where
A: Allocator,
I: Iterator + ?Sized, type Item = <I as Iterator>::Item;
pub fn from(cow: Cow<'_, [T]>) -> Box<[T], Global>ⓘNotable traits for Box<R, Global>
impl<R> Read for Box<R, Global> where
R: Read + ?Sized, impl<W> Write for Box<W, Global> where
W: Write + ?Sized, impl<F, A> Future for Box<F, A> where
A: Allocator + 'static,
F: Future + Unpin + ?Sized, type Output = <F as Future>::Output;impl<I, A> Iterator for Box<I, A> where
A: Allocator,
I: Iterator + ?Sized, type Item = <I as Iterator>::Item;
Performs the conversion.
pub fn from(cow: Cow<'_, CStr>) -> Box<CStr, Global>ⓘNotable traits for Box<R, Global>
impl<R> Read for Box<R, Global> where
R: Read + ?Sized, impl<W> Write for Box<W, Global> where
W: Write + ?Sized, impl<F, A> Future for Box<F, A> where
A: Allocator + 'static,
F: Future + Unpin + ?Sized, type Output = <F as Future>::Output;impl<I, A> Iterator for Box<I, A> where
A: Allocator,
I: Iterator + ?Sized, type Item = <I as Iterator>::Item;
pub fn from(cow: Cow<'_, CStr>) -> Box<CStr, Global>ⓘNotable traits for Box<R, Global>
impl<R> Read for Box<R, Global> where
R: Read + ?Sized, impl<W> Write for Box<W, Global> where
W: Write + ?Sized, impl<F, A> Future for Box<F, A> where
A: Allocator + 'static,
F: Future + Unpin + ?Sized, type Output = <F as Future>::Output;impl<I, A> Iterator for Box<I, A> where
A: Allocator,
I: Iterator + ?Sized, type Item = <I as Iterator>::Item;
Performs the conversion.
pub fn from(cow: Cow<'_, OsStr>) -> Box<OsStr, Global>ⓘNotable traits for Box<R, Global>
impl<R> Read for Box<R, Global> where
R: Read + ?Sized, impl<W> Write for Box<W, Global> where
W: Write + ?Sized, impl<F, A> Future for Box<F, A> where
A: Allocator + 'static,
F: Future + Unpin + ?Sized, type Output = <F as Future>::Output;impl<I, A> Iterator for Box<I, A> where
A: Allocator,
I: Iterator + ?Sized, type Item = <I as Iterator>::Item;
pub fn from(cow: Cow<'_, OsStr>) -> Box<OsStr, Global>ⓘNotable traits for Box<R, Global>
impl<R> Read for Box<R, Global> where
R: Read + ?Sized, impl<W> Write for Box<W, Global> where
W: Write + ?Sized, impl<F, A> Future for Box<F, A> where
A: Allocator + 'static,
F: Future + Unpin + ?Sized, type Output = <F as Future>::Output;impl<I, A> Iterator for Box<I, A> where
A: Allocator,
I: Iterator + ?Sized, type Item = <I as Iterator>::Item;
Performs the conversion.
pub fn from(cow: Cow<'_, Path>) -> Box<Path, Global>ⓘNotable traits for Box<R, Global>
impl<R> Read for Box<R, Global> where
R: Read + ?Sized, impl<W> Write for Box<W, Global> where
W: Write + ?Sized, impl<F, A> Future for Box<F, A> where
A: Allocator + 'static,
F: Future + Unpin + ?Sized, type Output = <F as Future>::Output;impl<I, A> Iterator for Box<I, A> where
A: Allocator,
I: Iterator + ?Sized, type Item = <I as Iterator>::Item;
pub fn from(cow: Cow<'_, Path>) -> Box<Path, Global>ⓘNotable traits for Box<R, Global>
impl<R> Read for Box<R, Global> where
R: Read + ?Sized, impl<W> Write for Box<W, Global> where
W: Write + ?Sized, impl<F, A> Future for Box<F, A> where
A: Allocator + 'static,
F: Future + Unpin + ?Sized, type Output = <F as Future>::Output;impl<I, A> Iterator for Box<I, A> where
A: Allocator,
I: Iterator + ?Sized, type Item = <I as Iterator>::Item;
Creates a boxed Path
from a clone-on-write pointer.
Converting from a Cow::Owned
does not clone or allocate.
pub fn from(cow: Cow<'_, str>) -> Box<str, Global>ⓘNotable traits for Box<R, Global>
impl<R> Read for Box<R, Global> where
R: Read + ?Sized, impl<W> Write for Box<W, Global> where
W: Write + ?Sized, impl<F, A> Future for Box<F, A> where
A: Allocator + 'static,
F: Future + Unpin + ?Sized, type Output = <F as Future>::Output;impl<I, A> Iterator for Box<I, A> where
A: Allocator,
I: Iterator + ?Sized, type Item = <I as Iterator>::Item;
pub fn from(cow: Cow<'_, str>) -> Box<str, Global>ⓘNotable traits for Box<R, Global>
impl<R> Read for Box<R, Global> where
R: Read + ?Sized, impl<W> Write for Box<W, Global> where
W: Write + ?Sized, impl<F, A> Future for Box<F, A> where
A: Allocator + 'static,
F: Future + Unpin + ?Sized, type Output = <F as Future>::Output;impl<I, A> Iterator for Box<I, A> where
A: Allocator,
I: Iterator + ?Sized, type Item = <I as Iterator>::Item;
Performs the conversion.
Convert a clone-on-write slice into a vector.
If s
already owns a Vec<T>
, it will be returned directly.
If s
is borrowing a slice, a new Vec<T>
will be allocated and
filled by cloning s
’s items into it.
Examples
let o: Cow<[i32]> = Cow::Owned(vec![1, 2, 3]); let b: Cow<[i32]> = Cow::Borrowed(&[1, 2, 3]); assert_eq!(Vec::from(o), Vec::from(b));
pub fn from(err: Cow<'a, str>) -> Box<dyn Error + 'static, Global>ⓘNotable traits for Box<R, Global>
impl<R> Read for Box<R, Global> where
R: Read + ?Sized, impl<W> Write for Box<W, Global> where
W: Write + ?Sized, impl<F, A> Future for Box<F, A> where
A: Allocator + 'static,
F: Future + Unpin + ?Sized, type Output = <F as Future>::Output;impl<I, A> Iterator for Box<I, A> where
A: Allocator,
I: Iterator + ?Sized, type Item = <I as Iterator>::Item;
pub fn from(err: Cow<'a, str>) -> Box<dyn Error + 'static, Global>ⓘNotable traits for Box<R, Global>
impl<R> Read for Box<R, Global> where
R: Read + ?Sized, impl<W> Write for Box<W, Global> where
W: Write + ?Sized, impl<F, A> Future for Box<F, A> where
A: Allocator + 'static,
F: Future + Unpin + ?Sized, type Output = <F as Future>::Output;impl<I, A> Iterator for Box<I, A> where
A: Allocator,
I: Iterator + ?Sized, type Item = <I as Iterator>::Item;
Converts a clone-on-write string to an owned
instance of String
.
This extracts the owned string, clones the string if it is not already owned.
Example
// If the string is not owned... let cow: Cow<str> = Cow::Borrowed("eggplant"); // It will allocate on the heap and copy the string. let owned: String = String::from(cow); assert_eq!(&owned[..], "eggplant");
pub fn from(err: Cow<'b, str>) -> Box<dyn Error + Sync + Send + 'a, Global>ⓘNotable traits for Box<R, Global>
impl<R> Read for Box<R, Global> where
R: Read + ?Sized, impl<W> Write for Box<W, Global> where
W: Write + ?Sized, impl<F, A> Future for Box<F, A> where
A: Allocator + 'static,
F: Future + Unpin + ?Sized, type Output = <F as Future>::Output;impl<I, A> Iterator for Box<I, A> where
A: Allocator,
I: Iterator + ?Sized, type Item = <I as Iterator>::Item;
pub fn from(err: Cow<'b, str>) -> Box<dyn Error + Sync + Send + 'a, Global>ⓘNotable traits for Box<R, Global>
impl<R> Read for Box<R, Global> where
R: Read + ?Sized, impl<W> Write for Box<W, Global> where
W: Write + ?Sized, impl<F, A> Future for Box<F, A> where
A: Allocator + 'static,
F: Future + Unpin + ?Sized, type Output = <F as Future>::Output;impl<I, A> Iterator for Box<I, A> where
A: Allocator,
I: Iterator + ?Sized, type Item = <I as Iterator>::Item;
Converts a Cow
into a box of dyn Error
+ Send
+ Sync
.
Examples
use std::error::Error; use std::mem; use std::borrow::Cow; let a_cow_str_error = Cow::from("a str error"); let a_boxed_error = Box::<dyn Error + Send + Sync>::from(a_cow_str_error); assert!( mem::size_of::<Box<dyn Error + Send + Sync>>() == mem::size_of_val(&a_boxed_error))
This method returns an ordering between self
and other
values if one exists. Read more
This method tests less than (for self
and other
) and is used by the <
operator. Read more
This method tests less than or equal to (for self
and other
) and is used by the <=
operator. Read more
This method tests greater than (for self
and other
) and is used by the >
operator. Read more
This method returns an ordering between self
and other
values if one exists. Read more
This method tests less than (for self
and other
) and is used by the <
operator. Read more
This method tests less than or equal to (for self
and other
) and is used by the <=
operator. Read more
This method tests greater than (for self
and other
) and is used by the >
operator. Read more
This method returns an ordering between self
and other
values if one exists. Read more
This method tests less than (for self
and other
) and is used by the <
operator. Read more
This method tests less than or equal to (for self
and other
) and is used by the <=
operator. Read more
This method tests greater than (for self
and other
) and is used by the >
operator. Read more
This method returns an ordering between self
and other
values if one exists. Read more
This method tests less than (for self
and other
) and is used by the <
operator. Read more
This method tests less than or equal to (for self
and other
) and is used by the <=
operator. Read more
This method tests greater than (for self
and other
) and is used by the >
operator. Read more
This method returns an ordering between self
and other
values if one exists. Read more
This method tests less than (for self
and other
) and is used by the <
operator. Read more
This method tests less than or equal to (for self
and other
) and is used by the <=
operator. Read more
This method tests greater than (for self
and other
) and is used by the >
operator. Read more
This method returns an ordering between self
and other
values if one exists. Read more
This method tests less than (for self
and other
) and is used by the <
operator. Read more
This method tests less than or equal to (for self
and other
) and is used by the <=
operator. Read more
This method tests greater than (for self
and other
) and is used by the >
operator. Read more
This method returns an ordering between self
and other
values if one exists. Read more
This method tests less than (for self
and other
) and is used by the <
operator. Read more
This method tests less than or equal to (for self
and other
) and is used by the <=
operator. Read more
This method tests greater than (for self
and other
) and is used by the >
operator. Read more
This method returns an ordering between self
and other
values if one exists. Read more
This method tests less than (for self
and other
) and is used by the <
operator. Read more
This method tests less than or equal to (for self
and other
) and is used by the <=
operator. Read more
This method tests greater than (for self
and other
) and is used by the >
operator. Read more
This method returns an ordering between self
and other
values if one exists. Read more
This method tests less than (for self
and other
) and is used by the <
operator. Read more
This method tests less than or equal to (for self
and other
) and is used by the <=
operator. Read more
This method tests greater than (for self
and other
) and is used by the >
operator. Read more
This method returns an ordering between self
and other
values if one exists. Read more
This method tests less than (for self
and other
) and is used by the <
operator. Read more
This method tests less than or equal to (for self
and other
) and is used by the <=
operator. Read more
This method tests greater than (for self
and other
) and is used by the >
operator. Read more
This method returns an ordering between self
and other
values if one exists. Read more
This method tests less than (for self
and other
) and is used by the <
operator. Read more
This method tests less than or equal to (for self
and other
) and is used by the <=
operator. Read more
This method tests greater than (for self
and other
) and is used by the >
operator. Read more
This method returns an ordering between self
and other
values if one exists. Read more
This method tests less than (for self
and other
) and is used by the <
operator. Read more
This method tests less than or equal to (for self
and other
) and is used by the <=
operator. Read more
This method tests greater than (for self
and other
) and is used by the >
operator. Read more
This method returns an ordering between self
and other
values if one exists. Read more
This method tests less than (for self
and other
) and is used by the <
operator. Read more
This method tests less than or equal to (for self
and other
) and is used by the <=
operator. Read more
This method tests greater than (for self
and other
) and is used by the >
operator. Read more
This method returns an ordering between self
and other
values if one exists. Read more
This method tests less than (for self
and other
) and is used by the <
operator. Read more
This method tests less than or equal to (for self
and other
) and is used by the <=
operator. Read more
This method tests greater than (for self
and other
) and is used by the >
operator. Read more
This method returns an ordering between self
and other
values if one exists. Read more
This method tests less than (for self
and other
) and is used by the <
operator. Read more
This method tests less than or equal to (for self
and other
) and is used by the <=
operator. Read more
This method tests greater than (for self
and other
) and is used by the >
operator. Read more
This method returns an ordering between self
and other
values if one exists. Read more
This method tests less than (for self
and other
) and is used by the <
operator. Read more
This method tests less than or equal to (for self
and other
) and is used by the <=
operator. Read more
This method tests greater than (for self
and other
) and is used by the >
operator. Read more
This method returns an ordering between self
and other
values if one exists. Read more
This method tests less than (for self
and other
) and is used by the <
operator. Read more
This method tests less than or equal to (for self
and other
) and is used by the <=
operator. Read more
This method tests greater than (for self
and other
) and is used by the >
operator. Read more
This method returns an ordering between self
and other
values if one exists. Read more
This method tests less than (for self
and other
) and is used by the <
operator. Read more
This method tests less than or equal to (for self
and other
) and is used by the <=
operator. Read more
This method tests greater than (for self
and other
) and is used by the >
operator. Read more
This method returns an ordering between self
and other
values if one exists. Read more
This method tests less than (for self
and other
) and is used by the <
operator. Read more
This method tests less than or equal to (for self
and other
) and is used by the <=
operator. Read more
This method tests greater than (for self
and other
) and is used by the >
operator. Read more
This method returns an ordering between self
and other
values if one exists. Read more
This method tests less than (for self
and other
) and is used by the <
operator. Read more
This method tests less than or equal to (for self
and other
) and is used by the <=
operator. Read more
This method tests greater than (for self
and other
) and is used by the >
operator. Read more
This method returns an ordering between self
and other
values if one exists. Read more
This method tests less than (for self
and other
) and is used by the <
operator. Read more
This method tests less than or equal to (for self
and other
) and is used by the <=
operator. Read more
This method tests greater than (for self
and other
) and is used by the >
operator. Read more
This method returns an ordering between self
and other
values if one exists. Read more
This method tests less than (for self
and other
) and is used by the <
operator. Read more
This method tests less than or equal to (for self
and other
) and is used by the <=
operator. Read more
This method tests greater than (for self
and other
) and is used by the >
operator. Read more
This method returns an ordering between self
and other
values if one exists. Read more
This method tests less than (for self
and other
) and is used by the <
operator. Read more
This method tests less than or equal to (for self
and other
) and is used by the <=
operator. Read more
This method tests greater than (for self
and other
) and is used by the >
operator. Read more
This method returns an ordering between self
and other
values if one exists. Read more
This method tests less than (for self
and other
) and is used by the <
operator. Read more
This method tests less than or equal to (for self
and other
) and is used by the <=
operator. Read more
This method tests greater than (for self
and other
) and is used by the >
operator. Read more
This method returns an ordering between self
and other
values if one exists. Read more
This method tests less than (for self
and other
) and is used by the <
operator. Read more
This method tests less than or equal to (for self
and other
) and is used by the <=
operator. Read more
This method tests greater than (for self
and other
) and is used by the >
operator. Read more
Auto Trait Implementations
impl<'a, B: ?Sized> RefUnwindSafe for Cow<'a, B> where
B: RefUnwindSafe,
<B as ToOwned>::Owned: RefUnwindSafe,
impl<'a, B: ?Sized> UnwindSafe for Cow<'a, B> where
B: RefUnwindSafe,
<B as ToOwned>::Owned: UnwindSafe,
Blanket Implementations
Mutably borrows from an owned value. Read more