Struct frame_benchmarking::RegressionModel [−]
pub struct RegressionModel {
pub parameters: RegressionParameters,
pub se: RegressionParameters,
pub ssr: f64,
pub rsquared: f64,
pub rsquared_adj: f64,
pub pvalues: RegressionParameters,
pub residuals: RegressionParameters,
pub scale: f64,
}Expand description
A fitted regression model.
Is the result of FormulaRegressionBuilder.fit().
If a field has only one value for the model it is given as f64.
Otherwise it is given as a RegressionParameters struct.
Fields
parameters: RegressionParametersThe model’s intercept and slopes (also known as betas).
se: RegressionParametersThe standard errors of the parameter estimates.
ssr: f64Sum of squared residuals.
rsquared: f64R-squared of the model.
rsquared_adj: f64Adjusted R-squared of the model.
pvalues: RegressionParametersThe two-tailed p-values for the t-statistics of the params.
residuals: RegressionParametersThe residuals of the model.
scale: f64A scale factor for the covariance matrix.
Note that the square root of scale is often
called the standard error of the regression.
Implementations
impl RegressionModel
impl RegressionModelEvaluates the model on given new input data and returns the predicted values.
The new data is expected to have the same columns as the original data.
See RegressionDataBuilder.build for details on the type of the new_data parameter.
Note
This function does no special handling of non real values (NaN or infinity or negative infinity).
Such a value in new_data will result in a corresponding meaningless prediction.
Example
let y = vec![1., 2., 3., 4., 5.]; let x1 = vec![5., 4., 3., 2., 1.]; let x2 = vec![729.53, 439.0367, 42.054, 1., 0.]; let x3 = vec![258.589, 616.297, 215.061, 498.361, 0.]; let data = vec![("Y", y), ("X1", x1), ("X2", x2), ("X3", x3)]; let data = RegressionDataBuilder::new().build_from(data).unwrap(); let formula = "Y ~ X1 + X2 + X3"; let model = FormulaRegressionBuilder::new() .data(&data) .formula(formula) .fit()?; let new_data = vec![ ("X1", vec![2.5, 3.5]), ("X2", vec![2.0, 8.0]), ("X3", vec![2.0, 1.0]), ]; let prediction: Vec<f64> = model.predict(new_data)?; assert_eq!(prediction, vec![3.5000000000000275, 2.5000000000000533]);
Trait Implementations
impl Clone for RegressionModel
impl Clone for RegressionModelpub fn clone(&self) -> RegressionModel
pub fn clone(&self) -> RegressionModelReturns a copy of the value. Read more
Performs copy-assignment from source. Read more
Auto Trait Implementations
impl RefUnwindSafe for RegressionModelimpl Send for RegressionModelimpl Sync for RegressionModelimpl Unpin for RegressionModelimpl UnwindSafe for RegressionModelBlanket Implementations
Mutably borrows from an owned value. Read more
impl<T> Downcast for T where
T: Any,
impl<T> Downcast for T where
T: Any, Convert Box<dyn Trait> (where Trait: Downcast) to Box<dyn Any>. Box<dyn Any> can
then be further downcast into Box<ConcreteType> where ConcreteType implements Trait. Read more
pub fn into_any_rc(self: Rc<T>) -> Rc<dyn Any + 'static>
pub fn into_any_rc(self: Rc<T>) -> Rc<dyn Any + 'static>Convert Rc<Trait> (where Trait: Downcast) to Rc<Any>. Rc<Any> can then be
further downcast into Rc<ConcreteType> where ConcreteType implements Trait. Read more
Convert &Trait (where Trait: Downcast) to &Any. This is needed since Rust cannot
generate &Any’s vtable from &Trait’s. Read more
pub fn as_any_mut(&mut self) -> &mut (dyn Any + 'static)
pub fn as_any_mut(&mut self) -> &mut (dyn Any + 'static)Convert &mut Trait (where Trait: Downcast) to &Any. This is needed since Rust cannot
generate &mut Any’s vtable from &mut Trait’s. Read more
Instruments this type with the provided Span, returning an
Instrumented wrapper. Read more
type Output = T
type Output = TShould always be Self
The inverse inclusion map: attempts to construct self from the equivalent element of its
superset. Read more
pub fn is_in_subset(&self) -> bool
pub fn is_in_subset(&self) -> boolChecks if self is actually part of its subset T (and can be converted to it).
pub fn to_subset_unchecked(&self) -> SS
pub fn to_subset_unchecked(&self) -> SSUse with care! Same as self.to_subset but without any property checks. Always succeeds.
pub fn from_subset(element: &SS) -> SP
pub fn from_subset(element: &SS) -> SPThe inclusion map: converts self to the equivalent element of its superset.
The counterpart to unchecked_from.
Consume self to return an equivalent value of T.
pub fn vzip(self) -> Vimpl<T> MaybeDebug for T where
T: Debug, impl<T> MaybeDebug for T where
T: Debug,